{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79339e7da280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699530074139830893, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALbpgD6x8cQ+/r+7verIOr7bm209TXz/vAAAAAAAAAAAhsdlvnUfFz56Tqc+6m+DviqEXb3gHa09AAAAAAAAAAAmVjy+4XuEvNFdubseexa60I/wPfVg8ToAAIA/AACAP00EPb6BxrS8oNsWOz/UizkC2Rw+wHpUugAAgD8AAIA/zYZKvfl1bD/tZlq91+3dvmcSKL0GOsK9AAAAAAAAAABNafy9uDHOPUKJPT45id29dfKNPDhx0TwAAAAAAAAAALNgRr1AHrI/2UMOvkWw1r4T2zK9W5jrvAAAAAAAAAAATbOCvRQYmLrw2c63EYfFsjElibqaPO82AACAPwAAgD9zUO49J7+APz4XRz70z9W+2NajPe6HZTwAAAAAAAAAAEq2wj5JRCQ/xZCNPrwW1r6I1Ds+Nv2rvAAAAAAAAAAADWGyvWA6lT95YYe+dCnqvvRza723dgE9AAAAAAAAAACFdoG+14MhPx+iqLxMfZK+MDHuvW1kpDwAAAAAAAAAADNjojyPDnG6/5eRt+n6D7Nbk407knmnNgAAgD8AAIA/jYoBvn8Pij/oH4++4TkEv/3SJr4/VJ29AAAAAAAAAACmIz2+DrOFvHaIAztmmSk5k0jrPbJ/JboAAIA/AACAP4BFIb1ck2+6FLQxPJg4iDzEmA68k7NvPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEOQjD8+A6MAWyUTSwBjAF0lEdAqFDpNCZ4OnV9lChoBkdAYBjv4M4LkWgHTegDaAhHQKhRU3R5TqB1fZQoaAZHQHGaHPu5SWJoB00OAWgIR0CoU57M5fdAdX2UKGgGR0BvYcdBBzFNaAdNAwFoCEdAqFOqD28IzHV9lChoBkdAcVZDeTFERmgHTRsBaAhHQKhUbdB0ITp1fZQoaAZHQHDaG21D0DloB00RAWgIR0CoVIyMtK7JdX2UKGgGR0BzMrfWMCLdaAdNBgFoCEdAqFTgsunMuHV9lChoBkdAbQNW3BpHqmgHTRoBaAhHQKhV3nyNGVl1fZQoaAZHQG9ZLaufVZtoB00cAWgIR0CoVgR1HOKPdX2UKGgGR0BjfsEC/47BaAdN6ANoCEdAqIktGgBcRnV9lChoBkdAbyA1yeZof2gHTR4BaAhHQKiJZB4Uvf11fZQoaAZHQGpJWn889wFoB007AWgIR0CoitxyfcvedX2UKGgGR0BvQFxbSqlxaAdL/2gIR0Coi9nmA9V4dX2UKGgGR0BwRneMyad+aAdNBAFoCEdAqIvqWw/xD3V9lChoBkdAcFrhPCVKPGgHS/JoCEdAqIy7OPeYUnV9lChoBkdAbfzENOM2nGgHTYgCaAhHQKiM1AZbY9R1fZQoaAZHQF694lhPTG5oB03oA2gIR0CojP/2Cdz5dX2UKGgGR0By6zOLR8c/aAdNnQFoCEdAqI0u5avA5HV9lChoBkdAcZkmJWNm2GgHTQcBaAhHQKiNz3LV4HJ1fZQoaAZHQHCsfUnXumdoB01FAWgIR0Cojfr74zrNdX2UKGgGR0ByOZKIznA7aAdNDwFoCEdAqI4MRtgrpnV9lChoBkdAbakzgMtsemgHTQUBaAhHQKiOKqIacZt1fZQoaAZHQG8Q3g9/z8RoB0v+aAhHQKiOPgogFHJ1fZQoaAZHQG3UAc1fmcRoB017AWgIR0CojsyyUs4DdX2UKGgGR0BuhXK6nR9gaAdNCAFoCEdAqI+q/KyOaXV9lChoBkdAbLeGTLW7OGgHS/NoCEdAqJApASnLq3V9lChoBkdAYZqGiYb832gHTegDaAhHQKiRApz90ih1fZQoaAZHQHFJYL1EmY1oB00kAWgIR0CokSa/qPfbdX2UKGgGR0BwXlgAp8WsaAdL+2gIR0CokSc1fmcOdX2UKGgGR0BsyZ0wJw85aAdNBAFoCEdAqJFmCEpRXXV9lChoBkdAcI1fp2U0N2gHTQwBaAhHQKiRqjdpItl1fZQoaAZHQHDF8biqABloB00aAWgIR0CokhKNAC4jdX2UKGgGR0BxSaHARChOaAdNFQFoCEdAqJKTsniNsHV9lChoBkdAcd4kCmuTzWgHTQoBaAhHQKiSnpDeCTV1fZQoaAZHQHAZfTTfBN5oB00CAWgIR0Cokr5Cv5gxdX2UKGgGR0BvZJQP7N0OaAdL8GgIR0CokybZnL7odX2UKGgGR0Bt3w0uUUwjaAdNKQFoCEdAqJOS1PWQOnV9lChoBkdAYk/M495hSmgHTegDaAhHQKiT0IQe3hJ1fZQoaAZHQHDVTtgKF7FoB01bAWgIR0ColHLv1DjSdX2UKGgGR0Bw6CwOe8PGaAdL8GgIR0ColPYHX2/SdX2UKGgGR0BxyOU6gdwOaAdNFgFoCEdAqJUq2tuDSXV9lChoBkdAch5Z39rGi2gHS/toCEdAqJbHGS6lL3V9lChoBkdAYa8AZsKsuGgHTegDaAhHQKiW279Q40d1fZQoaAZHQHD5AyylenhoB00VAWgIR0ColxYO+ZgHdX2UKGgGR0Bv3NkH2RJVaAdNGAFoCEdAqJcrHQyAQXV9lChoBkdAcLmw2l2vCGgHTQQBaAhHQKiXZrCWNWF1fZQoaAZHQG4byApazNVoB00AAWgIR0Col9LK3d9EdX2UKGgGR0BxC6lrM1TBaAdNAgFoCEdAqJizKJVKgHV9lChoBkdAcD0MBp5/smgHTQwBaAhHQKiZBTP0I1N1fZQoaAZHQHJ5lRP420loB00EAWgIR0ComTVzIV/MdX2UKGgGR0BvRULUkOZtaAdNKQFoCEdAqJmXoouwo3V9lChoBkdAb32wIMSbpmgHTRABaAhHQKiaQbKA8Sx1fZQoaAZHQG+pkeQuEmJoB00jAWgIR0ComnMLF4s3dX2UKGgGR0BwZ3MNc4YKaAdNCgFoCEdAqJtgcghbGHV9lChoBkdAcs4wXZXdTGgHTSMBaAhHQKibZrFfiP11fZQoaAZHQHEM1RDTjNpoB00JAWgIR0Com44wRGtqdX2UKGgGR0BvHpbD/EOzaAdNBQFoCEdAqJ0gTj/+9HV9lChoBkdAcMBzreIl+mgHTRkBaAhHQKidmxPfsNV1fZQoaAZHQHGPxN/OMVFoB00YAWgIR0ConfMqJ/G3dX2UKGgGR0Bupf3xnWauaAdNEQFoCEdAqJ4DpRoAXHV9lChoBkdAcgBG8274BWgHTSEBaAhHQKieDC4z7/J1fZQoaAZHQHESsVUMoc9oB00fAWgIR0Conohwl0HRdX2UKGgGR0BwQ73Zf2K3aAdL8WgIR0ConpGXHBDYdX2UKGgGR0Bw6YzLwF1TaAdNFAFoCEdAqJ7uJ+DvmnV9lChoBkdAbHKuIyj59GgHTRcBaAhHQKifmajN6gN1fZQoaAZHQG8oO/1xsEdoB0v1aAhHQKifmXQ+lj51fZQoaAZHQHH70nogV45oB00GAWgIR0Con7vd/J/5dX2UKGgGR0Bw7TgNwzciaAdNNAFoCEdAqKFf3nIQv3V9lChoBkdAcAocAiml7GgHS+5oCEdAqKJBD/lyR3V9lChoBkdAcQu3fQ8fWGgHTQsBaAhHQKii2jNY8uB1fZQoaAZHQHA+VANXo1VoB00pAWgIR0CooyDXFtKqdX2UKGgGR0Bu47NjbzshaAdNBAFoCEdAqKODf779AHV9lChoBkdAcNajsUqQR2gHTRsBaAhHQKikh02cawV1fZQoaAZHQHE8IqTbFjxoB01LAWgIR0CopRlCCz1LdX2UKGgGR0BxJzTTfBN3aAdNHAFoCEdAqKWx8c+7lXV9lChoBkdAbYdoX9BKMGgHTT8BaAhHQKimQzvZyuJ1fZQoaAZHQGGPBWo3rD9oB03oA2gIR0Copo0nG828dX2UKGgGR0Bug9lZowmFaAdNPwJoCEdAqKdTVnVXm3V9lChoBkdAcG3PIGQjlmgHTRkBaAhHQKinnNHH3lF1fZQoaAZHQEMuw+MZP2xoB0vTaAhHQKioJL8rI5p1fZQoaAZHQHF/N92HLzRoB00NAWgIR0CoqDERradudX2UKGgGR0BwKhshxHXmaAdNJAFoCEdAqKl25UcXFnV9lChoBkdAbYe4Wk8A72gHTQABaAhHQKiqAEcKgI11fZQoaAZHQHAi6vzOHFhoB00AAWgIR0CoqoKWkadddX2UKGgGR0ByQGTW5H3DaAdNOAFoCEdAqKxmFev6j3V9lChoBkdAcc+IoVmBfGgHTUUBaAhHQKitqu9vjwR1fZQoaAZHQHKOO9Ba9sdoB0v6aAhHQKity7Pppvh1fZQoaAZHQHDrTLW7OFBoB00ZAWgIR0CoroDtgKF7dX2UKGgGR0Bxoc5eZ5RkaAdNSgFoCEdAqK6s9r4333V9lChoBkdAZGM73fyf+WgHTegDaAhHQKiu2ow22oh1fZQoaAZHQGwyhOHnEEVoB00GAWgIR0CosCDzAeq8dX2UKGgGR0Bykx5IH1OCaAdNewFoCEdAqLAr/n4fwXV9lChoBkdAY0fRpDeCTWgHTegDaAhHQKixDmwqy4Z1fZQoaAZHQG4nm2TgVGloB0v4aAhHQKiyXyNn5BV1fZQoaAZHQHMDMpPRArxoB01SAWgIR0Cosp3ljmSydX2UKGgGR0BeQnL3bmEHaAdN6ANoCEdAqLLZnvlU63V9lChoBkdAYp96u4gA62gHTegDaAhHQKizuISDh991fZQoaAZHQG+NwdjoZAJoB02xAWgIR0Cos+hQvYe1dX2UKGgGR0Bwy8DW9US7aAdL/WgIR0Cos//Abhm5dX2UKGgGR0BszBjOLR8daAdL/GgIR0CotBftx+8XdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}