|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class SEBasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8): |
|
super(SEBasicBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.se = SELayer(planes, reduction) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.relu(out) |
|
out = self.bn1(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.se(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
return out |
|
|
|
class SELayer(nn.Module): |
|
def __init__(self, channel, reduction=8): |
|
super(SELayer, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
self.fc = nn.Sequential( |
|
nn.Linear(channel, channel // reduction), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(channel // reduction, channel), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
b, c, _, _ = x.size() |
|
y = self.avg_pool(x).view(b, c) |
|
y = self.fc(y).view(b, c, 1, 1) |
|
return x * y |
|
|
|
class audioEncoder(nn.Module): |
|
def __init__(self, layers, num_filters, **kwargs): |
|
super(audioEncoder, self).__init__() |
|
block = SEBasicBlock |
|
self.inplanes = num_filters[0] |
|
|
|
self.conv1 = nn.Conv2d(1, num_filters[0] , kernel_size=7, stride=(2, 1), padding=3, |
|
bias=False) |
|
self.bn1 = nn.BatchNorm2d(num_filters[0]) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.layer1 = self._make_layer(block, num_filters[0], layers[0]) |
|
self.layer2 = self._make_layer(block, num_filters[1], layers[1], stride=(2, 2)) |
|
self.layer3 = self._make_layer(block, num_filters[2], layers[2], stride=(2, 2)) |
|
self.layer4 = self._make_layer(block, num_filters[3], layers[3], stride=(1, 1)) |
|
out_dim = num_filters[3] * block.expansion |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = torch.mean(x, dim=2, keepdim=True) |
|
x = x.view((x.size()[0], x.size()[1], -1)) |
|
x = x.transpose(1, 2) |
|
|
|
return x |