Upload 8 files
Browse files- README.md +202 -0
- adapter_config.json +31 -0
- adapter_model.safetensors +3 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +231 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: microsoft/Phi-3-mini-4k-instruct
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.7.1
|
adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 32,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 16,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"gate_proj",
|
23 |
+
"q_proj",
|
24 |
+
"v_proj",
|
25 |
+
"k_proj",
|
26 |
+
"up_proj",
|
27 |
+
"o_proj",
|
28 |
+
"down_proj"
|
29 |
+
],
|
30 |
+
"task_type": "CAUSAL_LM"
|
31 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e4fea086c1f6f96126f66ce6a89be7bc027097705a072013ed21bb9388238a0
|
3 |
+
size 35668592
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97aebff48304ef32e27aee4747d4a236e927f04dc7c755f93d2558839374ef28
|
3 |
+
size 18009786
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1abfaabaed1654a43b21011670754dff8d4de5330cac46d21ef12dff10cd6351
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf72ff674c4d7b184c8aa1b2af572e0aa537a40db0cf8ad80bb97ff5eb161408
|
3 |
+
size 1064
|
trainer_state.json
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.19941402971744537,
|
3 |
+
"best_model_checkpoint": "/kaggle/working/trainer/checkpoint-590",
|
4 |
+
"epoch": 15.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1770,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"learning_rate": 4.8408871745419484e-05,
|
14 |
+
"loss": 2.902,
|
15 |
+
"step": 118
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 1.0,
|
19 |
+
"eval_loss": 0.314755380153656,
|
20 |
+
"eval_runtime": 19.7216,
|
21 |
+
"eval_samples_per_second": 1.318,
|
22 |
+
"eval_steps_per_second": 0.659,
|
23 |
+
"step": 118
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 2.0,
|
27 |
+
"learning_rate": 4.563645130183221e-05,
|
28 |
+
"loss": 0.3101,
|
29 |
+
"step": 236
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 2.0,
|
33 |
+
"eval_loss": 0.8408044576644897,
|
34 |
+
"eval_runtime": 19.716,
|
35 |
+
"eval_samples_per_second": 1.319,
|
36 |
+
"eval_steps_per_second": 0.659,
|
37 |
+
"step": 236
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 3.0,
|
41 |
+
"learning_rate": 4.2960462873674064e-05,
|
42 |
+
"loss": 1.0237,
|
43 |
+
"step": 354
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"epoch": 3.0,
|
47 |
+
"eval_loss": 0.23988741636276245,
|
48 |
+
"eval_runtime": 19.7335,
|
49 |
+
"eval_samples_per_second": 1.318,
|
50 |
+
"eval_steps_per_second": 0.659,
|
51 |
+
"step": 354
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 4.0,
|
55 |
+
"learning_rate": 4.011571841851495e-05,
|
56 |
+
"loss": 0.3245,
|
57 |
+
"step": 472
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 4.0,
|
61 |
+
"eval_loss": 0.20902396738529205,
|
62 |
+
"eval_runtime": 19.6909,
|
63 |
+
"eval_samples_per_second": 1.32,
|
64 |
+
"eval_steps_per_second": 0.66,
|
65 |
+
"step": 472
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 5.0,
|
69 |
+
"learning_rate": 3.7270973963355835e-05,
|
70 |
+
"loss": 0.1679,
|
71 |
+
"step": 590
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 5.0,
|
75 |
+
"eval_loss": 0.19941402971744537,
|
76 |
+
"eval_runtime": 19.7266,
|
77 |
+
"eval_samples_per_second": 1.318,
|
78 |
+
"eval_steps_per_second": 0.659,
|
79 |
+
"step": 590
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 6.0,
|
83 |
+
"learning_rate": 3.442622950819672e-05,
|
84 |
+
"loss": 0.1973,
|
85 |
+
"step": 708
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 6.0,
|
89 |
+
"eval_loss": 0.21409890055656433,
|
90 |
+
"eval_runtime": 19.7603,
|
91 |
+
"eval_samples_per_second": 1.316,
|
92 |
+
"eval_steps_per_second": 0.658,
|
93 |
+
"step": 708
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 7.0,
|
97 |
+
"learning_rate": 3.158148505303761e-05,
|
98 |
+
"loss": 0.2323,
|
99 |
+
"step": 826
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 7.0,
|
103 |
+
"eval_loss": 0.2766213119029999,
|
104 |
+
"eval_runtime": 19.7249,
|
105 |
+
"eval_samples_per_second": 1.318,
|
106 |
+
"eval_steps_per_second": 0.659,
|
107 |
+
"step": 826
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 8.0,
|
111 |
+
"learning_rate": 2.87367405978785e-05,
|
112 |
+
"loss": 0.2064,
|
113 |
+
"step": 944
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 8.0,
|
117 |
+
"eval_loss": 0.20961548388004303,
|
118 |
+
"eval_runtime": 19.7074,
|
119 |
+
"eval_samples_per_second": 1.319,
|
120 |
+
"eval_steps_per_second": 0.66,
|
121 |
+
"step": 944
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 9.0,
|
125 |
+
"learning_rate": 2.589199614271938e-05,
|
126 |
+
"loss": 0.1943,
|
127 |
+
"step": 1062
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 9.0,
|
131 |
+
"eval_loss": 0.2783980965614319,
|
132 |
+
"eval_runtime": 19.7328,
|
133 |
+
"eval_samples_per_second": 1.318,
|
134 |
+
"eval_steps_per_second": 0.659,
|
135 |
+
"step": 1062
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 10.0,
|
139 |
+
"learning_rate": 2.304725168756027e-05,
|
140 |
+
"loss": 0.2605,
|
141 |
+
"step": 1180
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 10.0,
|
145 |
+
"eval_loss": 0.28063008189201355,
|
146 |
+
"eval_runtime": 19.721,
|
147 |
+
"eval_samples_per_second": 1.318,
|
148 |
+
"eval_steps_per_second": 0.659,
|
149 |
+
"step": 1180
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 11.0,
|
153 |
+
"learning_rate": 2.020250723240116e-05,
|
154 |
+
"loss": 0.2797,
|
155 |
+
"step": 1298
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 11.0,
|
159 |
+
"eval_loss": 0.7226824164390564,
|
160 |
+
"eval_runtime": 19.7144,
|
161 |
+
"eval_samples_per_second": 1.319,
|
162 |
+
"eval_steps_per_second": 0.659,
|
163 |
+
"step": 1298
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 12.0,
|
167 |
+
"learning_rate": 1.7357762777242045e-05,
|
168 |
+
"loss": 0.5877,
|
169 |
+
"step": 1416
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 12.0,
|
173 |
+
"eval_loss": 0.3170361816883087,
|
174 |
+
"eval_runtime": 19.7302,
|
175 |
+
"eval_samples_per_second": 1.318,
|
176 |
+
"eval_steps_per_second": 0.659,
|
177 |
+
"step": 1416
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 13.0,
|
181 |
+
"learning_rate": 1.4513018322082934e-05,
|
182 |
+
"loss": 0.3059,
|
183 |
+
"step": 1534
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 13.0,
|
187 |
+
"eval_loss": 0.24836881458759308,
|
188 |
+
"eval_runtime": 19.6883,
|
189 |
+
"eval_samples_per_second": 1.321,
|
190 |
+
"eval_steps_per_second": 0.66,
|
191 |
+
"step": 1534
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 14.0,
|
195 |
+
"learning_rate": 1.166827386692382e-05,
|
196 |
+
"loss": 0.1948,
|
197 |
+
"step": 1652
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 14.0,
|
201 |
+
"eval_loss": 0.25250551104545593,
|
202 |
+
"eval_runtime": 19.7516,
|
203 |
+
"eval_samples_per_second": 1.316,
|
204 |
+
"eval_steps_per_second": 0.658,
|
205 |
+
"step": 1652
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 15.0,
|
209 |
+
"learning_rate": 8.823529411764707e-06,
|
210 |
+
"loss": 0.1966,
|
211 |
+
"step": 1770
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 15.0,
|
215 |
+
"eval_loss": 0.21671946346759796,
|
216 |
+
"eval_runtime": 19.7256,
|
217 |
+
"eval_samples_per_second": 1.318,
|
218 |
+
"eval_steps_per_second": 0.659,
|
219 |
+
"step": 1770
|
220 |
+
}
|
221 |
+
],
|
222 |
+
"logging_steps": 500,
|
223 |
+
"max_steps": 2124,
|
224 |
+
"num_input_tokens_seen": 0,
|
225 |
+
"num_train_epochs": 18,
|
226 |
+
"save_steps": 500,
|
227 |
+
"total_flos": 3.242923135598592e+17,
|
228 |
+
"train_batch_size": 2,
|
229 |
+
"trial_name": null,
|
230 |
+
"trial_params": null
|
231 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5520bbc5f9d333e3b04e3f5b73b40d950e18d6c05ca69a9b27f17e1859e2fb94
|
3 |
+
size 4728
|