SushantGautam commited on
Commit
c4ffb9e
1 Parent(s): 8ec3d2c

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: facebook/opt-350m
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": null,
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 4,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8064c82605409f8b21404f20c5eeacdc8eb388e499f498eba32ce94dde69b992
3
+ size 1587800
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58c092feb790bf5b347805ebd94b7065649cc3f104d7fe67b4afa27f78235b57
3
+ size 3226554
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f964b3d6c81f5a50cf2acf368ec27e0d7671bd5c1175e2838772efa715d83395
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:162483e5af6716e28d0623a0197a95e6d7d270dcc2c3fbf5d12a15e1f064ca70
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "</s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "</s>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "1": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "2": {
14
+ "content": "</s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ }
21
+ },
22
+ "bos_token": "</s>",
23
+ "clean_up_tokenization_spaces": true,
24
+ "eos_token": "</s>",
25
+ "errors": "replace",
26
+ "model_max_length": 1000000000000000019884624838656,
27
+ "pad_token": "<pad>",
28
+ "tokenizer_class": "GPT2Tokenizer",
29
+ "unk_token": "</s>"
30
+ }
trainer_state.json ADDED
@@ -0,0 +1,481 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.3871,
3
+ "best_model_checkpoint": "logs_OPT/ybelkada/opt-350m-lora/checkpoint-1308",
4
+ "epoch": 6.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2616,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.11,
13
+ "grad_norm": 12307.013671875,
14
+ "learning_rate": 9.885321100917432e-05,
15
+ "loss": 2.8491,
16
+ "step": 50
17
+ },
18
+ {
19
+ "epoch": 0.23,
20
+ "grad_norm": 12963.0400390625,
21
+ "learning_rate": 9.770642201834863e-05,
22
+ "loss": 2.789,
23
+ "step": 100
24
+ },
25
+ {
26
+ "epoch": 0.34,
27
+ "grad_norm": 11882.9541015625,
28
+ "learning_rate": 9.655963302752295e-05,
29
+ "loss": 2.7515,
30
+ "step": 150
31
+ },
32
+ {
33
+ "epoch": 0.46,
34
+ "grad_norm": 11366.3447265625,
35
+ "learning_rate": 9.541284403669725e-05,
36
+ "loss": 2.7392,
37
+ "step": 200
38
+ },
39
+ {
40
+ "epoch": 0.57,
41
+ "grad_norm": 11676.5546875,
42
+ "learning_rate": 9.426605504587156e-05,
43
+ "loss": 2.7247,
44
+ "step": 250
45
+ },
46
+ {
47
+ "epoch": 0.69,
48
+ "grad_norm": 11853.2451171875,
49
+ "learning_rate": 9.311926605504587e-05,
50
+ "loss": 2.7219,
51
+ "step": 300
52
+ },
53
+ {
54
+ "epoch": 0.8,
55
+ "grad_norm": 11694.083984375,
56
+ "learning_rate": 9.197247706422019e-05,
57
+ "loss": 2.7155,
58
+ "step": 350
59
+ },
60
+ {
61
+ "epoch": 0.92,
62
+ "grad_norm": 11730.7705078125,
63
+ "learning_rate": 9.08256880733945e-05,
64
+ "loss": 2.7153,
65
+ "step": 400
66
+ },
67
+ {
68
+ "epoch": 1.0,
69
+ "eval_bert-score-f1": 0.05165594071149826,
70
+ "eval_bert-score-precision": 0.009280605241656303,
71
+ "eval_bert-score-recall": 0.09162026643753052,
72
+ "eval_gen_len": 1.0,
73
+ "eval_loss": 2.908092975616455,
74
+ "eval_rouge1": 0.5438,
75
+ "eval_rouge2": 0.1898,
76
+ "eval_rougeL": 0.3779,
77
+ "eval_rougeLsum": 0.5253,
78
+ "eval_runtime": 1.9821,
79
+ "eval_samples_per_second": 0.505,
80
+ "eval_steps_per_second": 0.505,
81
+ "step": 436
82
+ },
83
+ {
84
+ "epoch": 1.03,
85
+ "grad_norm": 11704.4638671875,
86
+ "learning_rate": 8.967889908256882e-05,
87
+ "loss": 2.7075,
88
+ "step": 450
89
+ },
90
+ {
91
+ "epoch": 1.15,
92
+ "grad_norm": 11411.2861328125,
93
+ "learning_rate": 8.853211009174312e-05,
94
+ "loss": 2.7113,
95
+ "step": 500
96
+ },
97
+ {
98
+ "epoch": 1.26,
99
+ "grad_norm": 11756.0546875,
100
+ "learning_rate": 8.738532110091744e-05,
101
+ "loss": 2.7055,
102
+ "step": 550
103
+ },
104
+ {
105
+ "epoch": 1.38,
106
+ "grad_norm": 12264.1328125,
107
+ "learning_rate": 8.623853211009176e-05,
108
+ "loss": 2.7084,
109
+ "step": 600
110
+ },
111
+ {
112
+ "epoch": 1.49,
113
+ "grad_norm": 12191.14453125,
114
+ "learning_rate": 8.509174311926605e-05,
115
+ "loss": 2.7043,
116
+ "step": 650
117
+ },
118
+ {
119
+ "epoch": 1.61,
120
+ "grad_norm": 12316.2470703125,
121
+ "learning_rate": 8.394495412844037e-05,
122
+ "loss": 2.7002,
123
+ "step": 700
124
+ },
125
+ {
126
+ "epoch": 1.72,
127
+ "grad_norm": 12066.7626953125,
128
+ "learning_rate": 8.279816513761469e-05,
129
+ "loss": 2.7009,
130
+ "step": 750
131
+ },
132
+ {
133
+ "epoch": 1.83,
134
+ "grad_norm": 12753.3515625,
135
+ "learning_rate": 8.165137614678899e-05,
136
+ "loss": 2.6945,
137
+ "step": 800
138
+ },
139
+ {
140
+ "epoch": 1.95,
141
+ "grad_norm": 13497.3369140625,
142
+ "learning_rate": 8.050458715596331e-05,
143
+ "loss": 2.7001,
144
+ "step": 850
145
+ },
146
+ {
147
+ "epoch": 2.0,
148
+ "eval_bert-score-f1": 0.055162131786346436,
149
+ "eval_bert-score-precision": 0.015301413834095001,
150
+ "eval_bert-score-recall": 0.09254243224859238,
151
+ "eval_gen_len": 1.0,
152
+ "eval_loss": 2.8941495418548584,
153
+ "eval_rouge1": 0.553,
154
+ "eval_rouge2": 0.213,
155
+ "eval_rougeL": 0.3825,
156
+ "eval_rougeLsum": 0.5346,
157
+ "eval_runtime": 0.2895,
158
+ "eval_samples_per_second": 3.454,
159
+ "eval_steps_per_second": 3.454,
160
+ "step": 872
161
+ },
162
+ {
163
+ "epoch": 2.06,
164
+ "grad_norm": 12265.7421875,
165
+ "learning_rate": 7.935779816513761e-05,
166
+ "loss": 2.6953,
167
+ "step": 900
168
+ },
169
+ {
170
+ "epoch": 2.18,
171
+ "grad_norm": 12369.7255859375,
172
+ "learning_rate": 7.821100917431193e-05,
173
+ "loss": 2.7006,
174
+ "step": 950
175
+ },
176
+ {
177
+ "epoch": 2.29,
178
+ "grad_norm": 12023.724609375,
179
+ "learning_rate": 7.706422018348625e-05,
180
+ "loss": 2.6967,
181
+ "step": 1000
182
+ },
183
+ {
184
+ "epoch": 2.41,
185
+ "grad_norm": 12832.462890625,
186
+ "learning_rate": 7.591743119266055e-05,
187
+ "loss": 2.6898,
188
+ "step": 1050
189
+ },
190
+ {
191
+ "epoch": 2.52,
192
+ "grad_norm": 12962.9765625,
193
+ "learning_rate": 7.477064220183486e-05,
194
+ "loss": 2.6945,
195
+ "step": 1100
196
+ },
197
+ {
198
+ "epoch": 2.64,
199
+ "grad_norm": 12374.212890625,
200
+ "learning_rate": 7.362385321100918e-05,
201
+ "loss": 2.6897,
202
+ "step": 1150
203
+ },
204
+ {
205
+ "epoch": 2.75,
206
+ "grad_norm": 12595.6669921875,
207
+ "learning_rate": 7.247706422018348e-05,
208
+ "loss": 2.6926,
209
+ "step": 1200
210
+ },
211
+ {
212
+ "epoch": 2.87,
213
+ "grad_norm": 12504.0595703125,
214
+ "learning_rate": 7.13302752293578e-05,
215
+ "loss": 2.6891,
216
+ "step": 1250
217
+ },
218
+ {
219
+ "epoch": 2.98,
220
+ "grad_norm": 12908.3642578125,
221
+ "learning_rate": 7.018348623853212e-05,
222
+ "loss": 2.695,
223
+ "step": 1300
224
+ },
225
+ {
226
+ "epoch": 3.0,
227
+ "eval_bert-score-f1": 0.06703756004571915,
228
+ "eval_bert-score-precision": 0.030596459284424782,
229
+ "eval_bert-score-recall": 0.10093347728252411,
230
+ "eval_gen_len": 1.0,
231
+ "eval_loss": 2.8901169300079346,
232
+ "eval_rouge1": 0.5484,
233
+ "eval_rouge2": 0.2083,
234
+ "eval_rougeL": 0.3871,
235
+ "eval_rougeLsum": 0.53,
236
+ "eval_runtime": 0.3104,
237
+ "eval_samples_per_second": 3.221,
238
+ "eval_steps_per_second": 3.221,
239
+ "step": 1308
240
+ },
241
+ {
242
+ "epoch": 3.1,
243
+ "grad_norm": 12873.3271484375,
244
+ "learning_rate": 6.903669724770642e-05,
245
+ "loss": 2.6891,
246
+ "step": 1350
247
+ },
248
+ {
249
+ "epoch": 3.21,
250
+ "grad_norm": 12999.7646484375,
251
+ "learning_rate": 6.788990825688074e-05,
252
+ "loss": 2.6907,
253
+ "step": 1400
254
+ },
255
+ {
256
+ "epoch": 3.33,
257
+ "grad_norm": 13313.30078125,
258
+ "learning_rate": 6.674311926605505e-05,
259
+ "loss": 2.6826,
260
+ "step": 1450
261
+ },
262
+ {
263
+ "epoch": 3.44,
264
+ "grad_norm": 13062.2900390625,
265
+ "learning_rate": 6.559633027522935e-05,
266
+ "loss": 2.6885,
267
+ "step": 1500
268
+ },
269
+ {
270
+ "epoch": 3.56,
271
+ "grad_norm": 12728.0263671875,
272
+ "learning_rate": 6.444954128440367e-05,
273
+ "loss": 2.6919,
274
+ "step": 1550
275
+ },
276
+ {
277
+ "epoch": 3.67,
278
+ "grad_norm": 12907.9404296875,
279
+ "learning_rate": 6.330275229357799e-05,
280
+ "loss": 2.693,
281
+ "step": 1600
282
+ },
283
+ {
284
+ "epoch": 3.78,
285
+ "grad_norm": 12380.5546875,
286
+ "learning_rate": 6.21559633027523e-05,
287
+ "loss": 2.6879,
288
+ "step": 1650
289
+ },
290
+ {
291
+ "epoch": 3.9,
292
+ "grad_norm": 12330.32421875,
293
+ "learning_rate": 6.1009174311926606e-05,
294
+ "loss": 2.6867,
295
+ "step": 1700
296
+ },
297
+ {
298
+ "epoch": 4.0,
299
+ "eval_bert-score-f1": 0.06787349283695221,
300
+ "eval_bert-score-precision": 0.02922355942428112,
301
+ "eval_bert-score-recall": 0.10404554754495621,
302
+ "eval_gen_len": 1.0,
303
+ "eval_loss": 2.888526678085327,
304
+ "eval_rouge1": 0.5346,
305
+ "eval_rouge2": 0.1991,
306
+ "eval_rougeL": 0.3779,
307
+ "eval_rougeLsum": 0.5161,
308
+ "eval_runtime": 0.3143,
309
+ "eval_samples_per_second": 3.182,
310
+ "eval_steps_per_second": 3.182,
311
+ "step": 1744
312
+ },
313
+ {
314
+ "epoch": 4.01,
315
+ "grad_norm": 13034.7822265625,
316
+ "learning_rate": 5.9862385321100924e-05,
317
+ "loss": 2.6872,
318
+ "step": 1750
319
+ },
320
+ {
321
+ "epoch": 4.13,
322
+ "grad_norm": 12861.380859375,
323
+ "learning_rate": 5.8715596330275236e-05,
324
+ "loss": 2.6879,
325
+ "step": 1800
326
+ },
327
+ {
328
+ "epoch": 4.24,
329
+ "grad_norm": 12877.626953125,
330
+ "learning_rate": 5.756880733944955e-05,
331
+ "loss": 2.6949,
332
+ "step": 1850
333
+ },
334
+ {
335
+ "epoch": 4.36,
336
+ "grad_norm": 13110.791015625,
337
+ "learning_rate": 5.642201834862385e-05,
338
+ "loss": 2.6798,
339
+ "step": 1900
340
+ },
341
+ {
342
+ "epoch": 4.47,
343
+ "grad_norm": 13043.751953125,
344
+ "learning_rate": 5.5275229357798164e-05,
345
+ "loss": 2.6877,
346
+ "step": 1950
347
+ },
348
+ {
349
+ "epoch": 4.59,
350
+ "grad_norm": 13076.4658203125,
351
+ "learning_rate": 5.4128440366972475e-05,
352
+ "loss": 2.6807,
353
+ "step": 2000
354
+ },
355
+ {
356
+ "epoch": 4.7,
357
+ "grad_norm": 12260.9541015625,
358
+ "learning_rate": 5.2981651376146794e-05,
359
+ "loss": 2.6806,
360
+ "step": 2050
361
+ },
362
+ {
363
+ "epoch": 4.82,
364
+ "grad_norm": 12857.9267578125,
365
+ "learning_rate": 5.1834862385321105e-05,
366
+ "loss": 2.6861,
367
+ "step": 2100
368
+ },
369
+ {
370
+ "epoch": 4.93,
371
+ "grad_norm": 13119.2509765625,
372
+ "learning_rate": 5.068807339449542e-05,
373
+ "loss": 2.689,
374
+ "step": 2150
375
+ },
376
+ {
377
+ "epoch": 5.0,
378
+ "eval_bert-score-f1": 0.07044733315706253,
379
+ "eval_bert-score-precision": 0.030797742307186127,
380
+ "eval_bert-score-recall": 0.1076577752828598,
381
+ "eval_gen_len": 1.0,
382
+ "eval_loss": 2.8861072063446045,
383
+ "eval_rouge1": 0.5484,
384
+ "eval_rouge2": 0.2037,
385
+ "eval_rougeL": 0.3871,
386
+ "eval_rougeLsum": 0.53,
387
+ "eval_runtime": 0.285,
388
+ "eval_samples_per_second": 3.509,
389
+ "eval_steps_per_second": 3.509,
390
+ "step": 2180
391
+ },
392
+ {
393
+ "epoch": 5.05,
394
+ "grad_norm": 13340.306640625,
395
+ "learning_rate": 4.954128440366973e-05,
396
+ "loss": 2.6858,
397
+ "step": 2200
398
+ },
399
+ {
400
+ "epoch": 5.16,
401
+ "grad_norm": 12620.7880859375,
402
+ "learning_rate": 4.839449541284404e-05,
403
+ "loss": 2.6824,
404
+ "step": 2250
405
+ },
406
+ {
407
+ "epoch": 5.28,
408
+ "grad_norm": 13280.1328125,
409
+ "learning_rate": 4.724770642201835e-05,
410
+ "loss": 2.6859,
411
+ "step": 2300
412
+ },
413
+ {
414
+ "epoch": 5.39,
415
+ "grad_norm": 12882.2529296875,
416
+ "learning_rate": 4.610091743119266e-05,
417
+ "loss": 2.6786,
418
+ "step": 2350
419
+ },
420
+ {
421
+ "epoch": 5.5,
422
+ "grad_norm": 13004.6220703125,
423
+ "learning_rate": 4.4954128440366975e-05,
424
+ "loss": 2.6792,
425
+ "step": 2400
426
+ },
427
+ {
428
+ "epoch": 5.62,
429
+ "grad_norm": 12589.1669921875,
430
+ "learning_rate": 4.3807339449541286e-05,
431
+ "loss": 2.6816,
432
+ "step": 2450
433
+ },
434
+ {
435
+ "epoch": 5.73,
436
+ "grad_norm": 12607.59765625,
437
+ "learning_rate": 4.26605504587156e-05,
438
+ "loss": 2.6892,
439
+ "step": 2500
440
+ },
441
+ {
442
+ "epoch": 5.85,
443
+ "grad_norm": 14242.603515625,
444
+ "learning_rate": 4.151376146788991e-05,
445
+ "loss": 2.6828,
446
+ "step": 2550
447
+ },
448
+ {
449
+ "epoch": 5.96,
450
+ "grad_norm": 12890.3896484375,
451
+ "learning_rate": 4.036697247706422e-05,
452
+ "loss": 2.684,
453
+ "step": 2600
454
+ },
455
+ {
456
+ "epoch": 6.0,
457
+ "eval_bert-score-f1": 0.059426210820674896,
458
+ "eval_bert-score-precision": 0.024532141163945198,
459
+ "eval_bert-score-recall": 0.09170834720134735,
460
+ "eval_gen_len": 1.0,
461
+ "eval_loss": 2.8896830081939697,
462
+ "eval_rouge1": 0.53,
463
+ "eval_rouge2": 0.1944,
464
+ "eval_rougeL": 0.3733,
465
+ "eval_rougeLsum": 0.5115,
466
+ "eval_runtime": 0.2673,
467
+ "eval_samples_per_second": 3.741,
468
+ "eval_steps_per_second": 3.741,
469
+ "step": 2616
470
+ }
471
+ ],
472
+ "logging_steps": 50,
473
+ "max_steps": 4360,
474
+ "num_input_tokens_seen": 0,
475
+ "num_train_epochs": 10,
476
+ "save_steps": 500,
477
+ "total_flos": 3.000077993558016e+17,
478
+ "train_batch_size": 180,
479
+ "trial_name": null,
480
+ "trial_params": null
481
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab38284ae9c07c3d46575bd97061ec4a5a4d0ac5d39d5370204ae450030ca820
3
+ size 4984
vocab.json ADDED
The diff for this file is too large to render. See raw diff