File size: 3,843 Bytes
7c27f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Regression_albert_aug_CustomLoss_3
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Regression_albert_aug_CustomLoss_3

This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2368
- Train Mae: 0.5301
- Train Mse: 0.4296
- Train R2-score: 0.7669
- Validation Loss: 0.2410
- Validation Mae: 0.5680
- Validation Mse: 0.4286
- Validation R2-score: 0.6930
- Epoch: 14

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Mae | Train Mse | Train R2-score | Validation Loss | Validation Mae | Validation Mse | Validation R2-score | Epoch |
|:----------:|:---------:|:---------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------------:|:-----:|
| 0.2614     | 0.5480    | 0.4524    | 0.7369         | 0.2408          | 0.5194         | 0.4609         | 0.7578              | 0     |
| 0.2442     | 0.5374    | 0.4362    | 0.7109         | 0.2334          | 0.5376         | 0.4391         | 0.7399              | 1     |
| 0.2431     | 0.5349    | 0.4356    | 0.7503         | 0.2432          | 0.5234         | 0.4657         | 0.7591              | 2     |
| 0.2386     | 0.5250    | 0.4264    | 0.7926         | 0.2348          | 0.5525         | 0.4316         | 0.7203              | 3     |
| 0.2409     | 0.5342    | 0.4325    | 0.7166         | 0.2431          | 0.5233         | 0.4656         | 0.7591              | 4     |
| 0.2400     | 0.5298    | 0.4310    | 0.7553         | 0.2358          | 0.5250         | 0.4490         | 0.7513              | 5     |
| 0.2384     | 0.5274    | 0.4299    | 0.7791         | 0.2341          | 0.5491         | 0.4329         | 0.7253              | 6     |
| 0.2413     | 0.5306    | 0.4335    | 0.7593         | 0.2365          | 0.5583         | 0.4299         | 0.7109              | 7     |
| 0.2381     | 0.5299    | 0.4298    | 0.7784         | 0.2335          | 0.5452         | 0.4347         | 0.7306              | 8     |
| 0.2379     | 0.5280    | 0.4297    | 0.7575         | 0.2335          | 0.5448         | 0.4349         | 0.7312              | 9     |
| 0.2374     | 0.5306    | 0.4309    | 0.8098         | 0.2334          | 0.5441         | 0.4352         | 0.7321              | 10    |
| 0.2381     | 0.5302    | 0.4303    | 0.7428         | 0.2337          | 0.5466         | 0.4340         | 0.7288              | 11    |
| 0.2376     | 0.5323    | 0.4275    | 0.7806         | 0.2333          | 0.5411         | 0.4369         | 0.7358              | 12    |
| 0.2339     | 0.5277    | 0.4217    | 0.7986         | 0.2363          | 0.5232         | 0.4506         | 0.7525              | 13    |
| 0.2368     | 0.5301    | 0.4296    | 0.7669         | 0.2410          | 0.5680         | 0.4286         | 0.6930              | 14    |


### Framework versions

- Transformers 4.28.1
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3