Szczotar93 commited on
Commit
42c69d6
1 Parent(s): eb30ca7

End of training

Browse files
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - layoutlmv4
8
+ model-index:
9
+ - name: layoutlm_alltags
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm_alltags
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the layoutlmv4 dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0891
21
+ - Customer Address: {'precision': 0.7764705882352941, 'recall': 0.8048780487804879, 'f1': 0.7904191616766466, 'number': 82}
22
+ - Customer Name: {'precision': 0.6666666666666666, 'recall': 0.8333333333333334, 'f1': 0.7407407407407408, 'number': 12}
23
+ - Invoice Number: {'precision': 0.8571428571428571, 'recall': 1.0, 'f1': 0.923076923076923, 'number': 12}
24
+ - Tax Amount: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
25
+ - Total Amount: {'precision': 0.7142857142857143, 'recall': 0.9090909090909091, 'f1': 0.8, 'number': 11}
26
+ - Vendor Name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12}
27
+ - Overall Precision: 0.7857
28
+ - Overall Recall: 0.8397
29
+ - Overall F1: 0.8118
30
+ - Overall Accuracy: 0.9801
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 3e-05
50
+ - train_batch_size: 16
51
+ - eval_batch_size: 8
52
+ - seed: 42
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 50
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Customer Address | Customer Name | Invoice Number | Tax Amount | Total Amount | Vendor Name | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
60
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
61
+ | 0.8211 | 6.67 | 20 | 0.3797 | {'precision': 0.25316455696202533, 'recall': 0.24390243902439024, 'f1': 0.24844720496894412, 'number': 82} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.2532 | 0.1527 | 0.1905 | 0.9050 |
62
+ | 0.3036 | 13.33 | 40 | 0.1941 | {'precision': 0.6448598130841121, 'recall': 0.8414634146341463, 'f1': 0.73015873015873, 'number': 82} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.75, 'recall': 0.75, 'f1': 0.75, 'number': 12} | 0.6555 | 0.5954 | 0.624 | 0.9493 |
63
+ | 0.1537 | 20.0 | 60 | 0.1153 | {'precision': 0.7157894736842105, 'recall': 0.8292682926829268, 'f1': 0.768361581920904, 'number': 82} | {'precision': 0.35714285714285715, 'recall': 0.4166666666666667, 'f1': 0.3846153846153846, 'number': 12} | {'precision': 0.8461538461538461, 'recall': 0.9166666666666666, 'f1': 0.8799999999999999, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.8461538461538461, 'recall': 0.9166666666666666, 'f1': 0.8799999999999999, 'number': 12} | 0.7037 | 0.7252 | 0.7143 | 0.9663 |
64
+ | 0.0862 | 26.67 | 80 | 0.0953 | {'precision': 0.8, 'recall': 0.8292682926829268, 'f1': 0.8143712574850299, 'number': 82} | {'precision': 0.6, 'recall': 0.75, 'f1': 0.6666666666666665, 'number': 12} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1': 0.8, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.9166666666666666, 'recall': 0.9166666666666666, 'f1': 0.9166666666666666, 'number': 12} | 0.7519 | 0.7634 | 0.7576 | 0.9757 |
65
+ | 0.0509 | 33.33 | 100 | 0.0846 | {'precision': 0.7857142857142857, 'recall': 0.8048780487804879, 'f1': 0.7951807228915663, 'number': 82} | {'precision': 0.7333333333333333, 'recall': 0.9166666666666666, 'f1': 0.8148148148148148, 'number': 12} | {'precision': 0.8571428571428571, 'recall': 1.0, 'f1': 0.923076923076923, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 1.0, 'recall': 0.5454545454545454, 'f1': 0.7058823529411764, 'number': 11} | {'precision': 0.8461538461538461, 'recall': 0.9166666666666666, 'f1': 0.8799999999999999, 'number': 12} | 0.8030 | 0.8092 | 0.8061 | 0.9775 |
66
+ | 0.0354 | 40.0 | 120 | 0.0852 | {'precision': 0.7710843373493976, 'recall': 0.7804878048780488, 'f1': 0.7757575757575758, 'number': 82} | {'precision': 0.6666666666666666, 'recall': 0.8333333333333334, 'f1': 0.7407407407407408, 'number': 12} | {'precision': 0.8, 'recall': 1.0, 'f1': 0.888888888888889, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.7142857142857143, 'recall': 0.9090909090909091, 'f1': 0.8, 'number': 11} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | 0.7770 | 0.8244 | 0.8 | 0.9797 |
67
+ | 0.0297 | 46.67 | 140 | 0.0891 | {'precision': 0.7764705882352941, 'recall': 0.8048780487804879, 'f1': 0.7904191616766466, 'number': 82} | {'precision': 0.6666666666666666, 'recall': 0.8333333333333334, 'f1': 0.7407407407407408, 'number': 12} | {'precision': 0.8571428571428571, 'recall': 1.0, 'f1': 0.923076923076923, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.7142857142857143, 'recall': 0.9090909090909091, 'f1': 0.8, 'number': 11} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | 0.7857 | 0.8397 | 0.8118 | 0.9801 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.32.1
73
+ - Pytorch 2.2.0+cpu
74
+ - Datasets 2.12.0
75
+ - Tokenizers 0.13.2
config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/layoutlm-base-uncased",
3
+ "architectures": [
4
+ "LayoutLMForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "O",
12
+ "1": "B-Invoice_Number",
13
+ "2": "I-Invoice_Number",
14
+ "3": "B-Vendor_Name",
15
+ "4": "I-Vendor_Name",
16
+ "5": "B-Customer_Name",
17
+ "6": "I-Customer_Name",
18
+ "7": "B-Customer_Address",
19
+ "8": "I-Customer_Address",
20
+ "9": "B-Total_Amount",
21
+ "10": "I-Total_Amount",
22
+ "11": "B-Tax_Amount",
23
+ "12": "I-Tax_Amount"
24
+ },
25
+ "initializer_range": 0.02,
26
+ "intermediate_size": 3072,
27
+ "label2id": {
28
+ "B-Customer_Address": 7,
29
+ "B-Customer_Name": 5,
30
+ "B-Invoice_Number": 1,
31
+ "B-Tax_Amount": 11,
32
+ "B-Total_Amount": 9,
33
+ "B-Vendor_Name": 3,
34
+ "I-Customer_Address": 8,
35
+ "I-Customer_Name": 6,
36
+ "I-Invoice_Number": 2,
37
+ "I-Tax_Amount": 12,
38
+ "I-Total_Amount": 10,
39
+ "I-Vendor_Name": 4,
40
+ "O": 0
41
+ },
42
+ "layer_norm_eps": 1e-12,
43
+ "max_2d_position_embeddings": 1024,
44
+ "max_position_embeddings": 512,
45
+ "model_type": "layoutlm",
46
+ "num_attention_heads": 12,
47
+ "num_hidden_layers": 12,
48
+ "output_past": true,
49
+ "pad_token_id": 0,
50
+ "position_embedding_type": "absolute",
51
+ "torch_dtype": "float32",
52
+ "transformers_version": "4.32.1",
53
+ "type_vocab_size": 2,
54
+ "use_cache": true,
55
+ "vocab_size": 30522
56
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": false,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a72141fc31374c9366f582e17745ad232e89f498953e7305c54c994c59da88c4
3
+ size 450619966
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": null,
3
+ "apply_ocr": false,
4
+ "clean_up_tokenization_spaces": true,
5
+ "cls_token": "[CLS]",
6
+ "cls_token_box": [
7
+ 0,
8
+ 0,
9
+ 0,
10
+ 0
11
+ ],
12
+ "do_basic_tokenize": true,
13
+ "do_lower_case": true,
14
+ "mask_token": "[MASK]",
15
+ "model_max_length": 512,
16
+ "never_split": null,
17
+ "only_label_first_subword": true,
18
+ "pad_token": "[PAD]",
19
+ "pad_token_box": [
20
+ 0,
21
+ 0,
22
+ 0,
23
+ 0
24
+ ],
25
+ "pad_token_label": -100,
26
+ "processor_class": "LayoutLMv2Processor",
27
+ "sep_token": "[SEP]",
28
+ "sep_token_box": [
29
+ 1000,
30
+ 1000,
31
+ 1000,
32
+ 1000
33
+ ],
34
+ "strip_accents": null,
35
+ "tokenize_chinese_chars": true,
36
+ "tokenizer_class": "LayoutLMv2Tokenizer",
37
+ "unk_token": "[UNK]"
38
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8bfcbd38eb26be6a7aa888692d577c56eb758cfcee5c85e17b6cdd0c748ce13
3
+ size 4536
vocab.txt ADDED
The diff for this file is too large to render. See raw diff