|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""DeBERTa model configuration""" |
|
|
|
from collections import OrderedDict |
|
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.onnx import OnnxConfig |
|
from transformers.utils import logging |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class DebertaConfiguration(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is |
|
used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture. |
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa |
|
[microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Arguments: |
|
vocab_size (`int`, *optional*, defaults to 30522): |
|
Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"` |
|
are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`]. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
relative_attention (`bool`, *optional*, defaults to `False`): |
|
Whether use relative position encoding. |
|
max_relative_positions (`int`, *optional*, defaults to 1): |
|
The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value |
|
as `max_position_embeddings`. |
|
pad_token_id (`int`, *optional*, defaults to 0): |
|
The value used to pad input_ids. |
|
position_biased_input (`bool`, *optional*, defaults to `True`): |
|
Whether add absolute position embedding to content embedding. |
|
pos_att_type (`List[str]`, *optional*): |
|
The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`, |
|
`["p2c", "c2p"]`. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import DebertaConfig, DebertaModel |
|
|
|
>>> # Initializing a DeBERTa microsoft/deberta-base style configuration |
|
>>> configuration = DebertaConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration |
|
>>> model = DebertaModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "deberta" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50265, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=0, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-7, |
|
relative_attention=False, |
|
max_relative_positions=-1, |
|
pad_token_id=0, |
|
position_biased_input=True, |
|
pos_att_type=None, |
|
pooler_dropout=0, |
|
pooler_hidden_act="gelu", |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.relative_attention = relative_attention |
|
self.max_relative_positions = max_relative_positions |
|
self.pad_token_id = pad_token_id |
|
self.position_biased_input = position_biased_input |
|
|
|
|
|
if isinstance(pos_att_type, str): |
|
pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")] |
|
|
|
self.pos_att_type = pos_att_type |
|
self.vocab_size = vocab_size |
|
self.layer_norm_eps = layer_norm_eps |
|
|
|
self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size) |
|
self.pooler_dropout = pooler_dropout |
|
self.pooler_hidden_act = pooler_hidden_act |
|
|
|
|
|
|
|
class DebertaOnnxConfig(OnnxConfig): |
|
@property |
|
def inputs(self) -> Mapping[str, Mapping[int, str]]: |
|
if self.task == "multiple-choice": |
|
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} |
|
else: |
|
dynamic_axis = {0: "batch", 1: "sequence"} |
|
if self._config.type_vocab_size > 0: |
|
return OrderedDict( |
|
[("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] |
|
) |
|
else: |
|
return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)]) |
|
|
|
@property |
|
def default_onnx_opset(self) -> int: |
|
return 12 |
|
|
|
def generate_dummy_inputs( |
|
self, |
|
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], |
|
batch_size: int = -1, |
|
seq_length: int = -1, |
|
num_choices: int = -1, |
|
is_pair: bool = False, |
|
framework: Optional["TensorType"] = None, |
|
num_channels: int = 3, |
|
image_width: int = 40, |
|
image_height: int = 40, |
|
tokenizer: "PreTrainedTokenizerBase" = None, |
|
) -> Mapping[str, Any]: |
|
dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework) |
|
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: |
|
del dummy_inputs["token_type_ids"] |
|
return dummy_inputs |
|
|
|
|