File size: 15,215 Bytes
91597cf 95830a4 91597cf d055a49 a4101b3 91597cf cb08fa4 d055a49 cb08fa4 d055a49 cb08fa4 d055a49 91597cf 84c5dee 91597cf d055a49 91597cf 15b8c5a 91597cf 4bbfb1d d055a49 91597cf d055a49 91597cf d055a49 91597cf d055a49 91597cf cb08fa4 91597cf d055a49 91597cf d055a49 91597cf d055a49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
---
license: other
license_name: cogvideox
license_link: https://huggingface.co/THUDM/CogVideoX-2b/blob/main/LICENSE
language:
- en
tags:
- cogvideox
- video-generation
- thudm
- text-to-video
inference: false
---
# CogVideoX-2B
<p style="text-align: center;">
<div align="center">
<img src=https://github.com/THUDM/CogVideo/raw/main/resources/logo.svg width="50%"/>
</div>
<p align="center">
<a href="https://huggingface.co/THUDM/CogVideoX-2b/blob/main/README_zh.md">📄 中文阅读</a> |
<a href="https://huggingface.co/spaces/THUDM/CogVideoX-2B-Space">🤗 Huggingface Space</a> |
<a href="https://github.com/THUDM/CogVideo">🌐 Github </a> |
<a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
</p>
## Demo Show
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Video Gallery with Captions</title>
<style>
.video-container {
display: flex;
flex-wrap: wrap;
justify-content: space-around;
}
.video-item {
width: 45%;
margin-bottom: 20px;
transition: transform 0.3s;
}
.video-item:hover {
transform: scale(1.1);
}
.caption {
text-align: center;
margin-top: 10px;
font-size: 11px;
}
</style>
</head>
<body>
<div class="video-container">
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/1.mp4" type="video/mp4">
</video>
<div class="caption">A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/2.mp4" type="video/mp4">
</video>
<div class="caption">The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from it’s tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently into the distance, with no other cars or vehicles in sight. The trees on either side of the road are redwoods, with patches of greenery scattered throughout. The car is seen from the rear following the curve with ease, making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself is surrounded by steep hills and mountains, with a clear blue sky above with wispy clouds.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/3.mp4" type="video/mp4">
</video>
<div class="caption">A street artist, clad in a worn-out denim jacket and a colorful bandana, stands before a vast concrete wall in the heart, holding a can of spray paint, spray-painting a colorful bird on a mottled wall.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/4.mp4" type="video/mp4">
</video>
<div class="caption"> In the haunting backdrop of a war-torn city, where ruins and crumbled walls tell a story of devastation, a poignant close-up frames a young girl. Her face is smudged with ash, a silent testament to the chaos around her. Her eyes glistening with a mix of sorrow and resilience, capturing the raw emotion of a world that has lost its innocence to the ravages of conflict.</div>
</div>
</div>
</body>
</html>
## Model Introduction
CogVideoX is an open-source version of the video generation model originating from [QingYing](https://chatglm.cn/video?lang=en?fr=osm_cogvideo). The table below displays the list of video generation models we currently offer, along with their foundational information.
<table style="border-collapse: collapse; width: 100%;">
<tr>
<th style="text-align: center;">Model Name</th>
<th style="text-align: center;">CogVideoX-2B (This Repository)</th>
<th style="text-align: center;">CogVideoX-5B</th>
</tr>
<tr>
<td style="text-align: center;">Model Description</td>
<td style="text-align: center;">Entry-level model, balancing compatibility. Low cost for running and secondary development.</td>
<td style="text-align: center;">Larger model with higher video generation quality and better visual effects.</td>
</tr>
<tr>
<td style="text-align: center;">Inference Precision</td>
<td style="text-align: center;"><b>FP16* (Recommended)</b>, BF16, FP32, FP8*, INT8, no support for INT4</td>
<td style="text-align: center;"><b>BF16 (Recommended)</b>, FP16, FP32, FP8*, INT8, no support for INT4</td>
</tr>
<tr>
<td style="text-align: center;">Single GPU VRAM Consumption</td>
<td style="text-align: center;">FP16: 18GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> / <b>12.5GB* using diffusers</b><br><b>INT8: 7.8GB* using diffusers with torchao</b></td>
<td style="text-align: center;">BF16: 26GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> / <b>20.7GB* using diffusers</b><br><b>INT8: 11.4GB* using diffusers with torchao</b></td>
</tr>
<tr>
<td style="text-align: center;">Multi-GPU Inference VRAM Consumption</td>
<td style="text-align: center;"><b>FP16: 10GB* using diffusers</b></td>
<td style="text-align: center;"><b>BF16: 15GB* using diffusers</b></td>
</tr>
<tr>
<td style="text-align: center;">Inference Speed<br>(Step = 50, FP/BF16)</td>
<td style="text-align: center;">Single A100: ~90 seconds<br>Single H100: ~45 seconds</td>
<td style="text-align: center;">Single A100: ~180 seconds<br>Single H100: ~90 seconds</td>
</tr>
<tr>
<td style="text-align: center;">Fine-tuning Precision</td>
<td style="text-align: center;"><b>FP16</b></td>
<td style="text-align: center;"><b>BF16</b></td>
</tr>
<tr>
<td style="text-align: center;">Fine-tuning VRAM Consumption (per GPU)</td>
<td style="text-align: center;">47 GB (bs=1, LORA)<br> 61 GB (bs=2, LORA)<br> 62GB (bs=1, SFT)</td>
<td style="text-align: center;">63 GB (bs=1, LORA)<br> 80 GB (bs=2, LORA)<br> 75GB (bs=1, SFT)</td>
</tr>
<tr>
<td style="text-align: center;">Prompt Language</td>
<td colspan="2" style="text-align: center;">English*</td>
</tr>
<tr>
<td style="text-align: center;">Prompt Length Limit</td>
<td colspan="2" style="text-align: center;">226 Tokens</td>
</tr>
<tr>
<td style="text-align: center;">Video Length</td>
<td colspan="2" style="text-align: center;">6 Seconds</td>
</tr>
<tr>
<td style="text-align: center;">Frame Rate</td>
<td colspan="2" style="text-align: center;">8 Frames per Second</td>
</tr>
<tr>
<td style="text-align: center;">Video Resolution</td>
<td colspan="2" style="text-align: center;">720 x 480, no support for other resolutions (including fine-tuning)</td>
</tr>
<tr>
<td style="text-align: center;">Positional Encoding</td>
<td style="text-align: center;">3d_sincos_pos_embed</td>
<td style="text-align: center;">3d_rope_pos_embed</td>
</tr>
</table>
**Data Explanation**
+ When testing with the diffusers library, the `enable_model_cpu_offload()` option and `pipe.vae.enable_tiling()` optimization were enabled. This solution has not been tested on devices other than **NVIDIA A100 / H100**. Typically, this solution is adaptable to all devices above the **NVIDIA Ampere architecture**. If the optimization is disabled, memory usage will increase significantly, with peak memory being about 3 times the table value.
+ The CogVideoX-2B model was trained using `FP16` precision, so it is recommended to use `FP16` for inference.
+ For multi-GPU inference, the `enable_model_cpu_offload()` optimization needs to be disabled.
+ Using the INT8 model will lead to reduced inference speed. This is done to allow low-memory GPUs to perform inference while maintaining minimal video quality loss, though the inference speed will be significantly reduced.
+ Inference speed tests also used the memory optimization mentioned above. Without memory optimization, inference speed increases by approximately 10%. Only the `diffusers` version of the model supports quantization.
+ The model only supports English input; other languages can be translated to English for refinement by large models.
**Note**
+ Using [SAT](https://github.com/THUDM/SwissArmyTransformer) for inference and fine-tuning of SAT version
models. Feel free to visit our GitHub for more information.
## Quick Start 🤗
This model supports deployment using the huggingface diffusers library. You can deploy it by following these steps.
**We recommend that you visit our [GitHub](https://github.com/THUDM/CogVideo) and check out the relevant prompt
optimizations and conversions to get a better experience.**
1. Install the required dependencies
```shell
# diffusers>=0.30.1
# transformers>=0.44.0
# accelerate>=0.33.0 (suggest install from source)
# imageio-ffmpeg>=0.5.1
pip install --upgrade transformers accelerate diffusers imageio-ffmpeg
```
2. Run the code
```python
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
## Quantized Inference
[PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be used to quantize the Text Encoder, Transformer and VAE modules to lower the memory requirement of CogVideoX. This makes it possible to run the model on free-tier T4 Colab or smaller VRAM GPUs as well! It is also worth noting that TorchAO quantization is fully compatible with `torch.compile`, which allows for much faster inference speed.
```diff
# To get started, PytorchAO needs to be installed from the GitHub source and PyTorch Nightly.
# Source and nightly installation is only required until next release.
import torch
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXPipeline
from diffusers.utils import export_to_video
+ from transformers import T5EncoderModel
+ from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight
+ quantization = int8_weight_only
+ text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="text_encoder", torch_dtype=torch.bfloat16)
+ quantize_(text_encoder, quantization())
+ transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16)
+ quantize_(transformer, quantization())
+ vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-2b", subfolder="vae", torch_dtype=torch.bfloat16)
+ quantize_(vae, quantization())
# Create pipeline and run inference
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
+ text_encoder=text_encoder,
+ transformer=transformer,
+ vae=vae,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
Additionally, the models can be serialized and stored in a quantized datatype to save disk space when using PytorchAO. Find examples and benchmarks at these links:
- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897)
- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa)
## Explore the Model
Welcome to our [github](https://github.com/THUDM/CogVideo), where you will find:
1. More detailed technical details and code explanation.
2. Optimization and conversion of prompt words.
3. Reasoning and fine-tuning of SAT version models, and even pre-release.
4. Project update log dynamics, more interactive opportunities.
5. CogVideoX toolchain to help you better use the model.
6. INT8 model inference code support.
## Model License
The CogVideoX-2B model (including its corresponding Transformers module and VAE module) is released under the [Apache 2.0 License](LICENSE).
The CogVideoX-5B model (Transformers module) is released under the [CogVideoX LICENSE](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE).
## Citation
```
@article{yang2024cogvideox,
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
journal={arXiv preprint arXiv:2408.06072},
year={2024}
}
```
|