zR commited on
Commit
0defbe5
1 Parent(s): 4ed09bf
Files changed (2) hide show
  1. README.md +99 -0
  2. README_zh.md +84 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_link: LICENSE.md
4
+
5
+ language:
6
+ - en
7
+
8
+ tags:
9
+ - text-to-image
10
+ - image-generation
11
+ - cogview
12
+
13
+ inference: false
14
+ ---
15
+
16
+ # CogView3-Plus-3B
17
+
18
+ <p style="text-align: center;">
19
+ <div align="center">
20
+ <img src=https://github.com/THUDM/CogView3/raw/main/resources/logo.svg width="50%"/>
21
+ </div>
22
+ <p align="center">
23
+ <a href="README_zh.md">📄 中文阅读 </a> |
24
+ <a href="https://huggingface.co/spaces/THUDM-HF-SPACE/CogView-3-Plus">🤗 Hugging Face Space | </a>
25
+ <a href="https://github.com/THUDM/CogView3">🌐 Github </a> |
26
+ <a href="https://arxiv.org/pdf/2403.05121">📜 arxiv </a>
27
+ </p>
28
+ <p align="center">
29
+ 📍 Visit <a href="https://chatglm.cn/main/gdetail/65a232c082ff90a2ad2f15e2?fr=osm_cogvideox&lang=zh"> Qingyan </a> and <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9"> API Platform</a> to experience larger-scale commercial video generation models.
30
+ </p>
31
+
32
+ ## Inference Requirements and Model Overview
33
+
34
+ This model is the DiT version of CogView3, a text-to-image generation model, supporting image generation from 512 to 2048px.
35
+
36
+ + Resolution: Width and height must meet the range from 512px to 2048px and must be divisible by 32.
37
+ + Inference Speed: 1s / step (tested on A100)
38
+ + Precision: BF16 / FP32 (FP16 is not supported, as it leads to overflow causing black images)
39
+
40
+ ## Memory Consumption
41
+
42
+ We tested memory consumption at several common resolutions on A100 devices, `batchsize=1, BF16`, as shown in the table below:
43
+
44
+ | 分辨率 | enable_model_cpu_offload OFF | enable_model_cpu_offload ON |
45
+ |-------------|------------------------------|-----------------------------|
46
+ | 512 * 512 | 19GB | 11GB |
47
+ | 720 * 480 | 20GB | 11GB |
48
+ | 1024 * 1024 | 23GB | 11GB |
49
+ | 1280 * 720 | 24GB | 11GB |
50
+ | 2048 * 2048 | 25GB | 11GB |
51
+
52
+ ## Quick Start
53
+
54
+ First, ensure the `diffusers` library is installed from source. Then, run the following code:
55
+
56
+ ```python
57
+ from diffusers import CogView3PlusPipeline
58
+ import torch
59
+
60
+ pipe = CogView3PlusPipeline.from_pretrained("THUDM/CogView3-Plus-3B", torch_dtype=torch.float16).to("cuda")
61
+
62
+ # Enable it to reduce GPU memory usage
63
+ pipe.enable_model_cpu_offload()
64
+ pipe.vae.enable_slicing()
65
+ pipe.vae.enable_tiling()
66
+
67
+ prompt = "A vibrant cherry red sports car sits proudly under the gleaming sun, its polished exterior smooth and flawless, casting a mirror-like reflection. The car features a low, aerodynamic body, angular headlights that gaze forward like predatory eyes, and a set of black, high-gloss racing rims that contrast starkly with the red. A subtle hint of chrome embellishes the grille and exhaust, while the tinted windows suggest a luxurious and private interior. The scene conveys a sense of speed and elegance, the car appearing as if it's about to burst into a sprint along a coastal road, with the ocean's azure waves crashing in the background."
68
+ image = pipe(
69
+ prompt=prompt,
70
+ guidance_scale=7.0,
71
+ num_images_per_prompt=1,
72
+ num_inference_steps=50,
73
+ width=1024,
74
+ height=1024,
75
+ ).images[0]
76
+
77
+ image.save("cogview3.png")
78
+ ```
79
+
80
+ For more content and to download the original SAT weights, please visit our [GitHub](https://github.com/THUDM/CogView3).
81
+
82
+ ## Citation
83
+
84
+ 🌟 If you find our work helpful, feel free to cite our paper and leave a star:
85
+
86
+ ```
87
+ @article{zheng2024cogview3,
88
+ title={Cogview3: Finer and faster text-to-image generation via relay diffusion},
89
+ author={Zheng, Wendi and Teng, Jiayan and Yang, Zhuoyi and Wang, Weihan and Chen, Jidong and Gu, Xiaotao and Dong, Yuxiao and Ding, Ming and Tang, Jie},
90
+ journal={arXiv preprint arXiv:2403.05121},
91
+ year={2024}
92
+ }
93
+ ```
94
+
95
+ We welcome your contributions, and you can click [here](resources/contribute_zh.md) for more information.
96
+
97
+ ## Model License
98
+
99
+ This Model is released under the [Apache 2.0 License](LICENSE).
README_zh.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CogView3-Plus-3B
2
+
3
+ <p style="text-align: center;">
4
+ <div align="center">
5
+ <img src=https://github.com/THUDM/CogView3/raw/main/resources/logo.svg width="50%"/>
6
+ </div>
7
+ <p align="center">
8
+ <a href="README.md">📄 Read in English</a> |
9
+ <a href="https://huggingface.co/spaces/THUDM-HF-SPACE/CogView-3-Plus">🤗 Hugging Face Space | </a>
10
+ <a href="https://github.com/THUDM/CogView3">🌐 Github </a> |
11
+ <a href="https://arxiv.org/pdf/2403.05121">📜 arxiv </a>
12
+ </p>
13
+ <p align="center">
14
+ 📍 前往<a href="https://chatglm.cn/main/gdetail/65a232c082ff90a2ad2f15e2?fr=osm_cogvideox&lang=zh"> 清言 </a> 和 <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9"> API平台</a> 体验更大规模的商业版视频生成模型。
15
+ </p>
16
+
17
+ ## 推理要求和模型介绍
18
+
19
+ 该模型是 CogView3 的 DiT 版本图像生成模型,支持从 512 到 2048 范围内的图像生成。
20
+
21
+ + 分辨率: 长宽均需满足 512px - 2048px 之间,均需被32整除。
22
+ + 推理速度: 1s / step (在 A100 进行测试)
23
+ + 精度: BF16 / FP32 (不支持FP16,会出现溢出导致纯黑图片)
24
+
25
+ ## 显存消耗
26
+
27
+ 我们在A100设备上对几个常见分辨率的显存消耗进行了测试,`batchsize=1, BF16`, 如下表所示:
28
+
29
+ | 分辨率 | enable_model_cpu_offload OFF | enable_model_cpu_offload ON |
30
+ |-------------|------------------------------|-----------------------------|
31
+ | 512 * 512 | 19GB | 11GB |
32
+ | 720 * 480 | 20GB | 11GB |
33
+ | 1024 * 1024 | 23GB | 11GB |
34
+ | 1280 * 720 | 24GB | 11GB |
35
+ | 2048 * 2048 | 25GB | 11GB |
36
+
37
+ ## 快速开始
38
+
39
+ 首先,确保从源代码安装`diffusers`库。接着,运行以下代码:
40
+
41
+ ```python
42
+ from diffusers import CogView3PlusPipeline
43
+ import torch
44
+
45
+ pipe = CogView3PlusPipeline.from_pretrained("THUDM/CogView3-Plus-3B", torch_dtype=torch.float16).to("cuda")
46
+
47
+ # Open it for reduce GPU memory usage
48
+ pipe.enable_model_cpu_offload()
49
+ pipe.vae.enable_slicing()
50
+ pipe.vae.enable_tiling()
51
+
52
+ prompt = "A vibrant cherry red sports car sits proudly under the gleaming sun, its polished exterior smooth and flawless, casting a mirror-like reflection. The car features a low, aerodynamic body, angular headlights that gaze forward like predatory eyes, and a set of black, high-gloss racing rims that contrast starkly with the red. A subtle hint of chrome embellishes the grille and exhaust, while the tinted windows suggest a luxurious and private interior. The scene conveys a sense of speed and elegance, the car appearing as if it's about to burst into a sprint along a coastal road, with the ocean's azure waves crashing in the background."
53
+ image = pipe(
54
+ prompt=prompt,
55
+ guidance_scale=7.0,
56
+ num_images_per_prompt=1,
57
+ num_inference_steps=50,
58
+ width=1024,
59
+ height=1024,
60
+ ).images[0]
61
+
62
+ image.save("cogview3.png")
63
+ ```
64
+
65
+ 更多内容以及下载 SAT 原始权重,请前往我们的 [github](https://github.com/THUDM/CogView3)。
66
+
67
+ ## 引用
68
+
69
+ 🌟 如果您发现我们的工作有所帮助,欢迎引用我们的文章,留下宝贵的stars
70
+
71
+ ```
72
+ @article{zheng2024cogview3,
73
+ title={Cogview3: Finer and faster text-to-image generation via relay diffusion},
74
+ author={Zheng, Wendi and Teng, Jiayan and Yang, Zhuoyi and Wang, Weihan and Chen, Jidong and Gu, Xiaotao and Dong, Yuxiao and Ding, Ming and Tang, Jie},
75
+ journal={arXiv preprint arXiv:2403.05121},
76
+ year={2024}
77
+ }
78
+ ```
79
+
80
+ 我们欢迎您的贡献,您可以点击[这里](resources/contribute_zh.md)查看更多信息。
81
+
82
+ ## 模型协议
83
+
84
+ 该模型基于 [Apache 2.0 License](LICENSE) 协议发布。