# CogView3-Plus-3B

📄 Read in English | 🤗 Hugging Face Space | 🌐 Github | 📜 arxiv

📍 前往 清言 API平台 体验更大规模的商业版视频生成模型。

## 推理要求和模型介绍 该模型是 CogView3 的 DiT 版本图像生成模型,支持从 512 到 2048 范围内的图像生成。 + 分辨率: 长宽均需满足 512px - 2048px 之间,均需被32整除。 + 推理速度: 1s / step (在 A100 进行测试) + 精度: BF16 / FP32 (不支持FP16,会出现溢出导致纯黑图片) ## 显存消耗 我们在A100设备上对几个常见分辨率的显存消耗进行了测试,`batchsize=1, BF16`, 如下表所示: | 分辨率 | enable_model_cpu_offload OFF | enable_model_cpu_offload ON | |-------------|------------------------------|-----------------------------| | 512 * 512 | 19GB | 11GB | | 720 * 480 | 20GB | 11GB | | 1024 * 1024 | 23GB | 11GB | | 1280 * 720 | 24GB | 11GB | | 2048 * 2048 | 25GB | 11GB | ## 快速开始 首先,确保从源代码安装`diffusers`库。 ```shell pip install git+https://github.com/huggingface/diffusers.git ``` 接着,运行以下代码: ```python from diffusers import CogView3PlusPipeline import torch pipe = CogView3PlusPipeline.from_pretrained("THUDM/CogView3-Plus-3B", torch_dtype=torch.float16).to("cuda") # Open it for reduce GPU memory usage pipe.enable_model_cpu_offload() pipe.vae.enable_slicing() pipe.vae.enable_tiling() prompt = "A vibrant cherry red sports car sits proudly under the gleaming sun, its polished exterior smooth and flawless, casting a mirror-like reflection. The car features a low, aerodynamic body, angular headlights that gaze forward like predatory eyes, and a set of black, high-gloss racing rims that contrast starkly with the red. A subtle hint of chrome embellishes the grille and exhaust, while the tinted windows suggest a luxurious and private interior. The scene conveys a sense of speed and elegance, the car appearing as if it's about to burst into a sprint along a coastal road, with the ocean's azure waves crashing in the background." image = pipe( prompt=prompt, guidance_scale=7.0, num_images_per_prompt=1, num_inference_steps=50, width=1024, height=1024, ).images[0] image.save("cogview3.png") ``` 更多内容以及下载 SAT 原始权重,请前往我们的 [github](https://github.com/THUDM/CogView3)。 ## 引用 🌟 如果您发现我们的工作有所帮助,欢迎引用我们的文章,留下宝贵的stars ``` @article{zheng2024cogview3, title={Cogview3: Finer and faster text-to-image generation via relay diffusion}, author={Zheng, Wendi and Teng, Jiayan and Yang, Zhuoyi and Wang, Weihan and Chen, Jidong and Gu, Xiaotao and Dong, Yuxiao and Ding, Ming and Tang, Jie}, journal={arXiv preprint arXiv:2403.05121}, year={2024} } ``` ## 模型协议 该模型基于 [Apache 2.0 License](LICENSE) 协议发布。