File size: 18,449 Bytes
1676f07
85ba2d2
e46a148
85ba2d2
 
873f1a2
 
 
 
 
 
 
 
 
85ba2d2
 
 
 
6d10497
 
873f1a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d10497
85ba2d2
 
 
 
 
 
 
 
 
 
 
 
 
873f1a2
85ba2d2
 
 
 
 
 
37f2196
e46a148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ba2d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
591fa87
 
873f1a2
85ba2d2
 
 
 
 
 
6d10497
85ba2d2
 
6d10497
 
 
 
 
 
 
 
85ba2d2
 
 
 
 
 
6d10497
85ba2d2
 
e46a148
6d10497
 
 
 
 
 
85ba2d2
 
 
 
 
 
 
 
 
6d10497
85ba2d2
 
 
6d10497
85ba2d2
 
6d10497
 
85ba2d2
 
6d10497
 
 
 
 
 
85ba2d2
 
 
 
 
6d10497
 
 
 
 
 
 
 
 
 
 
 
85ba2d2
 
 
 
 
 
 
 
 
 
 
e46a148
85ba2d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
873f1a2
85ba2d2
1676f07
 
 
 
 
 
 
 
85ba2d2
 
 
1676f07
 
 
 
 
 
85ba2d2
 
 
 
6d10497
85ba2d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d10497
 
 
 
 
 
85ba2d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
873f1a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import json
import os
import re
from typing import List, Optional, Union, Dict
from sentencepiece import SentencePieceProcessor
from transformers import AddedToken, PreTrainedTokenizer, PreTrainedTokenizerFast
from transformers.convert_slow_tokenizer import (
    SLOW_TO_FAST_CONVERTERS,
    SpmConverter,
    decoders,
    normalizers,
    pre_tokenizers,
    processors,
)
from transformers.utils import logging, PaddingStrategy
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding


logger = logging.get_logger(__name__)

ADDITIONAL_SPECIAL_TOKENS = [
    "[MASK]",
    "[gMASK]",
    "[sMASK]",
    "<!sop!>",
    "<!eop!>",
    "<|system|>",
    "<|user|>",
    "<|assistant|>",
    "<|observation|>",
]
PREFIX_TOKENS = ["[gMASK]", "<!sop!>"]

DUMMY_PREFIX_INDICATOR_FOR_FAST = "<!dummy-prefix!>"


class SPTokenizer:
    def __init__(self, model_path: str):
        # reload tokenizer
        assert os.path.isfile(model_path), model_path
        self.sp_model = SentencePieceProcessor(model_file=model_path)

        # BOS / EOS token IDs
        self.n_words: int = self.sp_model.vocab_size()
        self.bos_id: int = self.sp_model.bos_id()
        self.eos_id: int = self.sp_model.eos_id()
        self.pad_id: int = self.sp_model.unk_id()
        assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()

        special_tokens = ADDITIONAL_SPECIAL_TOKENS
        self.special_tokens = {}
        self.index_special_tokens = {}
        for token in special_tokens:
            self.special_tokens[token] = self.n_words
            self.index_special_tokens[self.n_words] = token
            self.n_words += 1
        self.role_special_token_expression = "|".join([re.escape(token) for token in special_tokens]) # for apply_chat_template

    def tokenize(self, s: str, encode_special_tokens=False):
        if encode_special_tokens:
            last_index = 0
            t = []
            for match in re.finditer(self.role_special_token_expression, s):
                if last_index < match.start():
                    t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
                t.append(s[match.start():match.end()])
                last_index = match.end()
            if last_index < len(s):
                t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
            return t
        else:
            return self.sp_model.EncodeAsPieces(s)

    def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
        assert type(s) is str
        t = self.sp_model.encode(s)
        if bos:
            t = [self.bos_id] + t
        if eos:
            t = t + [self.eos_id]
        return t

    def decode(self, t: List[int]) -> str:
        text, buffer = "", []
        for token in t:
            if token in self.index_special_tokens:
                if buffer:
                    text += self.sp_model.decode(buffer)
                    buffer = []
                text += self.index_special_tokens[token]
            else:
                buffer.append(token)
        if buffer:
            text += self.sp_model.decode(buffer)
        return text

    def decode_tokens(self, tokens: List[str]) -> str:
        text = self.sp_model.DecodePieces(tokens)
        return text

    def convert_token_to_id(self, token):
        """ Converts a token (str) in an id using the vocab. """
        if token in self.special_tokens:
            return self.special_tokens[token]
        return self.sp_model.PieceToId(token)

    def convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        if index in self.index_special_tokens:
            return self.index_special_tokens[index]
        if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0 or index >= self.sp_model.vocab_size():
            return ""
        return self.sp_model.IdToPiece(index)


class ChatGLMTokenizer(PreTrainedTokenizer):

    vocab_files_names = {"vocab_file": "tokenizer.model"}
    model_input_names = ["input_ids", "attention_mask", "position_ids"]

    def __init__(
        self,
        vocab_file,
        padding_side="left",
        clean_up_tokenization_spaces=False,
        encode_special_tokens=False,
        **kwargs
    ):
        self.name = "GLMTokenizer"
        self.vocab_file = vocab_file
        self.tokenizer = SPTokenizer(vocab_file)
        self.special_tokens = {
            "<bos>": self.tokenizer.bos_id,
            "<eos>": self.tokenizer.eos_id,
            "<unk>": self.tokenizer.pad_id,
            "<pad>": self.tokenizer.pad_id
        }
        self.encode_special_tokens = encode_special_tokens

        super().__init__(
            padding_side=padding_side,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            **kwargs
        )

    def get_command(self, token):
        if token in self.special_tokens:
            return self.special_tokens[token]
        assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
        return self.tokenizer.special_tokens[token]

    @property
    def unk_token(self) -> str:
        return self.tokenizer.sp_model.IdToPiece(self.get_command("<unk>"))

    @property
    def pad_token(self) -> str:
        return self.tokenizer.sp_model.IdToPiece(self.get_command("<pad>"))

    @property
    def eos_token(self) -> str:
        return self.tokenizer.sp_model.IdToPiece(self.get_command("<eos>"))

    @property
    def unk_token_id(self) -> int:
        return self.get_command("<unk>")

    @property
    def pad_token_id(self) -> int:
        return self.get_command("<pad>")

    @property
    def eos_token_id(self):
        return self.get_command("<eos>")

    @unk_token.setter
    def unk_token(self, value):
        logger.warning("Setting unk_token is not supported, use the default one.")

    @pad_token.setter
    def pad_token(self, value):
        logger.warning("Setting pad_token is not supported, use the default one.")

    @eos_token.setter
    def eos_token(self, value):
        logger.warning("Setting eos_token is not supported, use the default one.")

    @property
    def vocab_size(self):
        return self.tokenizer.n_words

    def get_vocab(self):
        """ Returns vocab as a dict """
        vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    def _tokenize(self, text, **kwargs):
        return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)

    def _convert_token_to_id(self, token):
        """ Converts a token (str) in an id using the vocab. """
        return self.tokenizer.convert_token_to_id(token)

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.tokenizer.convert_id_to_token(index)

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        return self.tokenizer.decode_tokens(tokens)

    def save_vocabulary(self, save_directory, filename_prefix=None):
        """
        Save the vocabulary and special tokens file to a directory.

        Args:
            save_directory (`str`):
                The directory in which to save the vocabulary.
            filename_prefix (`str`, *optional*):
                An optional prefix to add to the named of the saved files.

        Returns:
            `Tuple(str)`: Paths to the files saved.
        """
        if os.path.isdir(save_directory):
            vocab_file = os.path.join(
                save_directory, self.vocab_files_names["vocab_file"]
            )
        else:
            vocab_file = save_directory

        with open(self.vocab_file, 'rb') as fin:
            proto_str = fin.read()

        with open(vocab_file, "wb") as writer:
            writer.write(proto_str)

        return (vocab_file,)

    def get_prefix_tokens(self):
        return list(map(self.get_command, PREFIX_TOKENS))

    def build_single_message(self, role, metadata, message):
        assert role in ["system", "user", "assistant", "observation"], role
        role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
        message_tokens = self.tokenizer.encode(message)
        tokens = role_tokens + message_tokens
        return tokens

    def build_chat_input(self, query, history=None, role="user"):
        if history is None:
            history = []
        input_ids = []
        for item in history:
            content = item["content"]
            if item["role"] == "system" and "tools" in item:
                content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
            input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
        input_ids.extend(self.build_single_message(role, "", query))
        input_ids.extend([self.get_command("<|assistant|>")])
        return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. A BERT sequence has the following format:

        - single sequence: `[CLS] X [SEP]`
        - pair of sequences: `[CLS] A [SEP] B [SEP]`

        Args:
            token_ids_0 (`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        """
        prefix_tokens = self.get_prefix_tokens()
        token_ids_0 = prefix_tokens + token_ids_0
        if token_ids_1 is not None:
            token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
        return token_ids_0

    def _pad(
        self,
        encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
        max_length: Optional[int] = None,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: Optional[bool] = None,
    ) -> dict:
        """
        Pad encoded inputs (on left/right and up to predefined length or max length in the batch)

        Args:
            encoded_inputs:
                Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
            max_length: maximum length of the returned list and optionally padding length (see below).
                Will truncate by taking into account the special tokens.
            padding_strategy: PaddingStrategy to use for padding.

                - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
                - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
                - PaddingStrategy.DO_NOT_PAD: Do not pad
                The tokenizer padding sides are defined in self.padding_side:

                    - 'left': pads on the left of the sequences
                    - 'right': pads on the right of the sequences
            pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
                This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
                `>= 7.5` (Volta).
            return_attention_mask:
                (optional) Set to False to avoid returning attention mask (default: set to model specifics)
        """
        # Load from model defaults
        assert self.padding_side == "left"

        required_input = encoded_inputs[self.model_input_names[0]]
        seq_length = len(required_input)

        if padding_strategy == PaddingStrategy.LONGEST:
            max_length = len(required_input)

        if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
            max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of

        needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length

        # Initialize attention mask if not present.
        if "attention_mask" not in encoded_inputs:
            encoded_inputs["attention_mask"] = [1] * seq_length

        if "position_ids" not in encoded_inputs:
            encoded_inputs["position_ids"] = list(range(seq_length))

        if needs_to_be_padded:
            difference = max_length - len(required_input)

            if "attention_mask" in encoded_inputs:
                encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
            if "position_ids" in encoded_inputs:
                encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
            encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input

        return encoded_inputs


class ChatGLMTokenizerFast(PreTrainedTokenizerFast):
    # multiple breaking changes, no backward-compatibility
    slow_tokenizer_class = ChatGLMTokenizer
    vocab_files_names = {
        **ChatGLMTokenizer.vocab_files_names,
        **PreTrainedTokenizerFast.vocab_files_names,
    }

    def __init__(self, **kwargs):
        kwargs.setdefault("clean_up_tokenization_spaces", False)
        kwargs.setdefault("bos_token", "<s>")
        kwargs.setdefault("eos_token", "</s>")
        kwargs.setdefault("unk_token", "<unk>")
        kwargs.setdefault("pad_token", "<unk>")
        super().__init__(**kwargs)

    @property
    def dummy_prefix_indicator(self):
        return DUMMY_PREFIX_INDICATOR_FOR_FAST

    @property
    def can_save_slow_tokenizer(self) -> bool:
        # multiple breaking changes
        return False

    def save_pretrained(self, *args, **kwargs):
        if not self.can_save_slow_tokenizer:
            logger.warning(
                f"{type(self).__name__} does not support saving slow tokenizer. "
                "Saving it at the same directory may break the original tokenizer. "
                "Please keep a backup beforehand."
            )

        return super().save_pretrained(*args, **kwargs)

    def build_single_message_prompt(self, role, metadata, message):
        assert role in ["system", "user", "assistant", "observation"], role
        return (
            f"<|{role}|>"
            f"{self.dummy_prefix_indicator}{metadata}\n"
            f"{self.dummy_prefix_indicator}{message}"
        )

    def build_chat_prompt(self, query, history=None, role="user", metadata=""):
        inputs = []

        for item in history or []:
            content = item["content"]

            if item["role"] == "system" and "tools" in item:
                content += "\n" + json.dumps(
                    item["tools"], indent=4, ensure_ascii=False
                )

            inputs.append(
                self.build_single_message_prompt(
                    item["role"], item.get("metadata", ""), content
                )
            )

        inputs.append(self.build_single_message_prompt(role, metadata, query))
        inputs.append("<|assistant|>")

        return "".join(inputs)

    def build_chat_input(self, *args, **kwargs):
        return self.batch_encode_plus(
            [self.build_chat_prompt(*args, **kwargs)],
            return_tensors="pt",
        )


ChatGLMTokenizer.register_for_auto_class()
ChatGLMTokenizerFast.register_for_auto_class()


class ChatGLMTokenizerConverter(SpmConverter):
    handle_byte_fallback = True

    def normalizer(self, proto):
        return normalizers.Sequence(
            [
                normalizers.Replace(
                    pattern=DUMMY_PREFIX_INDICATOR_FOR_FAST, content="▁"
                ),
                normalizers.Replace(pattern=" ", content="▁"),
            ]
        )

    def pre_tokenizer(self, replacement, add_prefix_space):
        # NOTE: don't use Metaspace, it won't merge spaces into one token
        # without Metaspace: "  " => ["▁▁"]
        # with Metaspace: "  " => ["▁", "▁"]
        return pre_tokenizers.Split(DUMMY_PREFIX_INDICATOR_FOR_FAST, "merged_with_next")

    def decoder(self, replacement, add_prefix_space):
        return decoders.Sequence(
            [
                decoders.ByteFallback(),
                decoders.Metaspace(replacement="▁", add_prefix_space=True),
            ]
        )

    def tokenizer(self, proto):
        tokenizer = super().tokenizer(proto)

        tokenizer.model.byte_fallback = True

        assert tokenizer.token_to_id("<unk>") == 0
        assert tokenizer.token_to_id("<s>") == 1
        assert tokenizer.token_to_id("</s>") == 2
        special_tokens = [
            "<unk>",
            "<s>",
            "</s>",
            *ADDITIONAL_SPECIAL_TOKENS,
        ]

        tokenizer.add_special_tokens(
            [AddedToken(token, special=True) for token in special_tokens]
        )

        return tokenizer

    def converted(self):
        tokenizer = super().converted()

        # Post processors
        prefix_token_ids = list(map(tokenizer.token_to_id, PREFIX_TOKENS))
        assert all(i is not None for i in prefix_token_ids)
        prefix_template = " ".join(PREFIX_TOKENS)

        template_special_tokens = list(frozenset(zip(PREFIX_TOKENS, prefix_token_ids)))

        if "</s>" not in PREFIX_TOKENS:
            eos_token_id = tokenizer.token_to_id("</s>")
            assert eos_token_id is not None
            template_special_tokens.append(("</s>", eos_token_id))

        post = processors.TemplateProcessing(
            single=f"{prefix_template} $A",
            pair=f"{prefix_template} $A $B:1 </s>:1",
            special_tokens=template_special_tokens,
        )
        if tokenizer.post_processor is None:
            tokenizer.post_processor = post
        else:
            tokenizer.post_processor = processors.Sequence(
                [tokenizer.post_processor, post]
            )

        return tokenizer


SLOW_TO_FAST_CONVERTERS[ChatGLMTokenizer.__name__] = ChatGLMTokenizerConverter