fix can't set attribute 'eos_token' when loading the saved tokenizer
Browse files- tokenization_chatglm.py +48 -20
tokenization_chatglm.py
CHANGED
@@ -8,6 +8,9 @@ from transformers.utils import logging, PaddingStrategy
|
|
8 |
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
|
10 |
|
|
|
|
|
|
|
11 |
class SPTokenizer:
|
12 |
def __init__(self, model_path: str):
|
13 |
# reload tokenizer
|
@@ -89,25 +92,34 @@ class SPTokenizer:
|
|
89 |
|
90 |
|
91 |
class ChatGLMTokenizer(PreTrainedTokenizer):
|
92 |
-
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
93 |
|
|
|
94 |
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
95 |
|
96 |
-
def __init__(
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
self.name = "GLMTokenizer"
|
99 |
-
|
100 |
self.vocab_file = vocab_file
|
101 |
self.tokenizer = SPTokenizer(vocab_file)
|
102 |
self.special_tokens = {
|
103 |
"<bos>": self.tokenizer.bos_id,
|
104 |
"<eos>": self.tokenizer.eos_id,
|
|
|
105 |
"<pad>": self.tokenizer.pad_id
|
106 |
}
|
107 |
self.encode_special_tokens = encode_special_tokens
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
111 |
|
112 |
def get_command(self, token):
|
113 |
if token in self.special_tokens:
|
@@ -117,24 +129,40 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
117 |
|
118 |
@property
|
119 |
def unk_token(self) -> str:
|
120 |
-
return "<unk>"
|
121 |
|
122 |
@property
|
123 |
def pad_token(self) -> str:
|
124 |
-
return "<
|
125 |
|
126 |
@property
|
127 |
-
def
|
128 |
-
return self.get_command("<
|
129 |
|
130 |
@property
|
131 |
-
def
|
132 |
-
return "
|
|
|
|
|
|
|
|
|
133 |
|
134 |
@property
|
135 |
def eos_token_id(self):
|
136 |
return self.get_command("<eos>")
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
@property
|
139 |
def vocab_size(self):
|
140 |
return self.tokenizer.n_words
|
@@ -212,7 +240,7 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
212 |
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
213 |
|
214 |
def build_inputs_with_special_tokens(
|
215 |
-
|
216 |
) -> List[int]:
|
217 |
"""
|
218 |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
@@ -237,12 +265,12 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
237 |
return token_ids_0
|
238 |
|
239 |
def _pad(
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
) -> dict:
|
247 |
"""
|
248 |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
|
|
8 |
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
|
10 |
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
|
14 |
class SPTokenizer:
|
15 |
def __init__(self, model_path: str):
|
16 |
# reload tokenizer
|
|
|
92 |
|
93 |
|
94 |
class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
|
95 |
|
96 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
97 |
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
98 |
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
vocab_file,
|
102 |
+
padding_side="left",
|
103 |
+
clean_up_tokenization_spaces=False,
|
104 |
+
encode_special_tokens=False,
|
105 |
+
**kwargs
|
106 |
+
):
|
107 |
self.name = "GLMTokenizer"
|
|
|
108 |
self.vocab_file = vocab_file
|
109 |
self.tokenizer = SPTokenizer(vocab_file)
|
110 |
self.special_tokens = {
|
111 |
"<bos>": self.tokenizer.bos_id,
|
112 |
"<eos>": self.tokenizer.eos_id,
|
113 |
+
"<unk>": self.tokenizer.pad_id,
|
114 |
"<pad>": self.tokenizer.pad_id
|
115 |
}
|
116 |
self.encode_special_tokens = encode_special_tokens
|
117 |
+
|
118 |
+
super().__init__(
|
119 |
+
padding_side=padding_side,
|
120 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
121 |
+
**kwargs
|
122 |
+
)
|
123 |
|
124 |
def get_command(self, token):
|
125 |
if token in self.special_tokens:
|
|
|
129 |
|
130 |
@property
|
131 |
def unk_token(self) -> str:
|
132 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<unk>"))
|
133 |
|
134 |
@property
|
135 |
def pad_token(self) -> str:
|
136 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<pad>"))
|
137 |
|
138 |
@property
|
139 |
+
def eos_token(self) -> str:
|
140 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<eos>"))
|
141 |
|
142 |
@property
|
143 |
+
def unk_token_id(self) -> int:
|
144 |
+
return self.get_command("<unk>")
|
145 |
+
|
146 |
+
@property
|
147 |
+
def pad_token_id(self) -> int:
|
148 |
+
return self.get_command("<pad>")
|
149 |
|
150 |
@property
|
151 |
def eos_token_id(self):
|
152 |
return self.get_command("<eos>")
|
153 |
|
154 |
+
@unk_token.setter
|
155 |
+
def unk_token(self, value):
|
156 |
+
logger.warning("Setting unk_token is not supported, use the default one.")
|
157 |
+
|
158 |
+
@pad_token.setter
|
159 |
+
def pad_token(self, value):
|
160 |
+
logger.warning("Setting pad_token is not supported, use the default one.")
|
161 |
+
|
162 |
+
@eos_token.setter
|
163 |
+
def eos_token(self, value):
|
164 |
+
logger.warning("Setting eos_token is not supported, use the default one.")
|
165 |
+
|
166 |
@property
|
167 |
def vocab_size(self):
|
168 |
return self.tokenizer.n_words
|
|
|
240 |
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
241 |
|
242 |
def build_inputs_with_special_tokens(
|
243 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
244 |
) -> List[int]:
|
245 |
"""
|
246 |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
|
265 |
return token_ids_0
|
266 |
|
267 |
def _pad(
|
268 |
+
self,
|
269 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
270 |
+
max_length: Optional[int] = None,
|
271 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
272 |
+
pad_to_multiple_of: Optional[int] = None,
|
273 |
+
return_attention_mask: Optional[bool] = None,
|
274 |
) -> dict:
|
275 |
"""
|
276 |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|