import json import os import warnings from typing import Dict, List, Optional, Tuple, Union from sentencepiece import SentencePieceProcessor from tokenizers import AddedToken, decoders, normalizers, processors from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast from transformers.convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS, SpmConverter from transformers.tokenization_utils_base import ( BatchEncoding, EncodedInput, PreTokenizedInput, PreTokenizedInputPair, TextInput, TextInputPair, TruncationStrategy, ) from transformers.utils import PaddingStrategy ADDITIONAL_SPECIAL_TOKENS = [ "[MASK]", "[gMASK]", "[sMASK]", "", "", "<|system|>", "<|user|>", "<|assistant|>", "<|observation|>", ] PREFIX_TOKENS = ["[gMASK]", ""] ENCODE_SEP_TOKEN_FOR_FAST = "" class SPTokenizer: def __init__(self, model_path: str): # reload tokenizer assert os.path.isfile(model_path), model_path self.sp_model = SentencePieceProcessor(model_file=model_path) # BOS / EOS token IDs self.n_words: int = self.sp_model.vocab_size() self.bos_id: int = self.sp_model.bos_id() self.eos_id: int = self.sp_model.eos_id() self.pad_id: int = self.sp_model.unk_id() assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() self.special_tokens = {} self.index_special_tokens = {} for token in ADDITIONAL_SPECIAL_TOKENS: self.special_tokens[token] = self.n_words self.index_special_tokens[self.n_words] = token self.n_words += 1 def tokenize(self, s: str): return self.sp_model.EncodeAsPieces(s) def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]: assert type(s) is str t = self.sp_model.encode(s) if bos: t = [self.bos_id] + t if eos: t = t + [self.eos_id] return t def decode(self, t: List[int]) -> str: text, buffer = "", [] for token in t: if token in self.index_special_tokens: if buffer: text += self.sp_model.decode(buffer) buffer = [] text += self.index_special_tokens[token] else: buffer.append(token) if buffer: text += self.sp_model.decode(buffer) return text def decode_tokens(self, tokens: List[str]) -> str: text = self.sp_model.DecodePieces(tokens) return text def convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ if token in self.special_tokens: return self.special_tokens[token] return self.sp_model.PieceToId(token) def convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.index_special_tokens: return self.index_special_tokens[index] if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0: return "" return self.sp_model.IdToPiece(index) class ChatGLMTokenizer(PreTrainedTokenizer): vocab_files_names = {"vocab_file": "tokenizer.model"} model_input_names = ["input_ids", "attention_mask", "position_ids"] def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs): self.name = "GLMTokenizer" self.vocab_file = vocab_file self.tokenizer = SPTokenizer(vocab_file) self.special_tokens = { "": self.tokenizer.bos_id, "": self.tokenizer.eos_id, "": self.tokenizer.pad_id } super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs) def get_command(self, token): if token in self.special_tokens: return self.special_tokens[token] assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}" return self.tokenizer.special_tokens[token] @property def unk_token(self) -> str: return "" @property def pad_token(self) -> str: return "" @property def pad_token_id(self): return self.get_command("") @property def eos_token(self) -> str: return "" @property def eos_token_id(self): return self.get_command("") @property def vocab_size(self): return self.tokenizer.n_words def get_vocab(self): """ Returns vocab as a dict """ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text, **kwargs): return self.tokenizer.tokenize(text) def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.tokenizer.convert_token_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.tokenizer.convert_id_to_token(index) def convert_tokens_to_string(self, tokens: List[str]) -> str: return self.tokenizer.decode_tokens(tokens) def save_vocabulary(self, save_directory, filename_prefix=None): """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. filename_prefix (`str`, *optional*): An optional prefix to add to the named of the saved files. Returns: `Tuple(str)`: Paths to the files saved. """ if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, self.vocab_files_names["vocab_file"] ) else: vocab_file = save_directory with open(self.vocab_file, 'rb') as fin: proto_str = fin.read() with open(vocab_file, "wb") as writer: writer.write(proto_str) return (vocab_file,) def get_prefix_tokens(self): return list(map(self.get_command, PREFIX_TOKENS)) def build_single_message(self, role, metadata, message): assert role in ["system", "user", "assistant", "observation"], role role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n") message_tokens = self.tokenizer.encode(message) tokens = role_tokens + message_tokens return tokens def build_chat_input(self, query, history=None, role="user"): if history is None: history = [] input_ids = [] for item in history: content = item["content"] if item["role"] == "system" and "tools" in item: content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False) input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content)) input_ids.extend(self.build_single_message(role, "", query)) input_ids.extend([self.get_command("<|assistant|>")]) return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ prefix_tokens = self.get_prefix_tokens() token_ids_0 = prefix_tokens + token_ids_0 if token_ids_1 is not None: token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("")] return token_ids_0 def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults assert self.padding_side == "left" required_input = encoded_inputs[self.model_input_names[0]] seq_length = len(required_input) if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * seq_length if "position_ids" not in encoded_inputs: encoded_inputs["position_ids"] = list(range(seq_length)) if needs_to_be_padded: difference = max_length - len(required_input) if "attention_mask" in encoded_inputs: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "position_ids" in encoded_inputs: encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input return encoded_inputs class ChatGLMTokenizerFast(PreTrainedTokenizerFast): # multiple breaking changes, no more backward-compatibility slow_tokenizer_class = ChatGLMTokenizer vocab_files_names = { **ChatGLMTokenizer.vocab_files_names, **PreTrainedTokenizerFast.vocab_files_names, } def __init__(self, **kwargs): kwargs.setdefault("clean_up_tokenization_spaces", False) kwargs.setdefault("bos_token", "") kwargs.setdefault("eos_token", "") kwargs.setdefault("unk_token", "") kwargs.setdefault("pad_token", "") super().__init__(**kwargs) @property def encode_sep_token(self): return ENCODE_SEP_TOKEN_FOR_FAST def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair], ], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: def split_sep(t: Union[TextInput, PreTokenizedInput]) -> PreTokenizedInput: if isinstance(t, str): return t.split(self.encode_sep_token) return [w for word in t for w in split_sep(word)] def split_maybe_tupled( t: Union[TextInput, TextInputPair, PreTokenizedInput, PreTokenizedInputPair] ) -> Union[PreTokenizedInputPair, PreTokenizedInput]: if isinstance(t, tuple): return split_sep(t[0]), split_sep(t[1]) return split_sep(t) return super()._batch_encode_plus( list(map(split_maybe_tupled, batch_text_or_text_pairs)), # pyright: ignore add_special_tokens, padding_strategy, truncation_strategy, max_length, stride, True, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, ) @property def can_save_slow_tokenizer(self) -> bool: # multiple breaking changes return False def save_pretrained( self, save_directory: Union[str, os.PathLike], legacy_format: Optional[bool] = None, filename_prefix: Optional[str] = None, push_to_hub: bool = False, **kwargs, ) -> Tuple[str]: warnings.warn( f"{type(self)} does not support saving slow tokenizer. " "Saving it at the same directory may break the slow tokenizer. " "Please keep a backup of the original tokenizer beforehand." ) return super().save_pretrained( save_directory, legacy_format, filename_prefix, push_to_hub, **kwargs ) def build_single_message(self, role, metadata, message): assert role in ["system", "user", "assistant", "observation"], role return f"<|{role}|>{self.encode_sep_token}{metadata}\n{self.encode_sep_token}{message}" def build_chat_text(self, query, history=None, role="user", metadata=""): inputs = [] for item in history or []: content = item["content"] if item["role"] == "system" and "tools" in item: content += "\n" + json.dumps( item["tools"], indent=4, ensure_ascii=False ) inputs.append( self.build_single_message( item["role"], item.get("metadata", ""), content ) ) inputs.append(self.build_single_message(role, metadata, query)) inputs.append("<|assistant|>") return "".join(inputs) def build_chat_input(self, *args, **kwargs): return self.batch_encode_plus( [self.build_chat_text(*args, **kwargs)], return_tensors="pt", ) ChatGLMTokenizer.register_for_auto_class() ChatGLMTokenizerFast.register_for_auto_class() class ChatGLMTokenizerConverter(SpmConverter): handle_byte_fallback = True def normalizer(self, proto): return normalizers.Sequence( [ normalizers.Prepend(prepend="▁"), normalizers.Replace(pattern=" ", content="▁"), ] ) def pre_tokenizer(self, replacement, add_prefix_space): # don't use Metaspace, it will skip merging spaces into one token # give up to split `encode_sep_token` here, buggy # return pre_tokenizers.Split(ENCODE_SEP_TOKEN_FOR_FAST, "removed") return None def decoder(self, replacement, add_prefix_space): return decoders.Sequence( [ decoders.ByteFallback(), super().decoder(replacement, add_prefix_space), ] ) def tokenizer(self, proto): tokenizer = super().tokenizer(proto) tokenizer.model.byte_fallback = True special_tokens = [ "", "", "", *ADDITIONAL_SPECIAL_TOKENS, ] tokenizer.add_special_tokens( [ AddedToken(token, special=True, normalized=False) for token in special_tokens ] ) return tokenizer def converted(self): tokenizer = super().converted() # Post processors prefix_token_ids = list(map(tokenizer.token_to_id, PREFIX_TOKENS)) assert all(i is not None for i in prefix_token_ids) prefix_template = " ".join(PREFIX_TOKENS) template_special_tokens = list(frozenset(zip(PREFIX_TOKENS, prefix_token_ids))) if "" not in PREFIX_TOKENS: eos_token_id = tokenizer.token_to_id("") assert eos_token_id is not None template_special_tokens.append(("", eos_token_id)) post = processors.TemplateProcessing( single=f"{prefix_template} $A", pair=f"{prefix_template} $A $B:1 :1", special_tokens=template_special_tokens, ) if tokenizer.post_processor is None: tokenizer.post_processor = post else: tokenizer.post_processor = processors.Sequence( [tokenizer.post_processor, post] ) return tokenizer SLOW_TO_FAST_CONVERTERS[ChatGLMTokenizer.__name__] = ChatGLMTokenizerConverter