zR
commited on
Commit
•
4c3068a
1
Parent(s):
600a885
test
Browse files- README.md +135 -48
- README_zh.md +143 -0
README.md
CHANGED
@@ -1,51 +1,138 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
#- gpt
|
11 |
-
|
12 |
-
#domain:
|
13 |
-
##如 nlp、cv、audio、multi-modal
|
14 |
-
#- nlp
|
15 |
-
|
16 |
-
#language:
|
17 |
-
##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
|
18 |
-
#- cn
|
19 |
-
|
20 |
-
#metrics:
|
21 |
-
##如 CIDEr、Blue、ROUGE 等
|
22 |
-
#- CIDEr
|
23 |
-
|
24 |
-
#tags:
|
25 |
-
##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
|
26 |
-
#- pretrained
|
27 |
-
|
28 |
-
#tools:
|
29 |
-
##如 vllm、fastchat、llamacpp、AdaSeq 等
|
30 |
-
#- vllm
|
31 |
-
---
|
32 |
-
### 当前模型的贡献者未提供更加详细的模型介绍。模型文件和权重,可浏览“模型文件”页面获取。
|
33 |
-
#### 您可以通过如下git clone命令,或者ModelScope SDK来下载模型
|
34 |
-
|
35 |
-
SDK下载
|
36 |
-
```bash
|
37 |
-
#安装ModelScope
|
38 |
-
pip install modelscope
|
39 |
-
```
|
40 |
```python
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
```
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CogVLM2-Llama3-Caption
|
2 |
+
|
3 |
+
<div align="center">
|
4 |
+
<img src=https://raw.githubusercontent.com/THUDM/CogVLM2/cf9cb3c60a871e0c8e5bde7feaf642e3021153e6/resources/logo.svg>
|
5 |
+
</div>
|
6 |
+
|
7 |
+
通常情况下,大部分视频数据并没有附带相应的描述性文本,因此有必要将视频数据转换成文本描述,以提供文本到视频模型所需的必要训练数据。
|
8 |
+
|
9 |
+
## 使用方式
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
```python
|
11 |
+
import io
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
from decord import cpu, VideoReader, bridge
|
15 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
16 |
+
import argparse
|
17 |
+
|
18 |
+
MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
|
19 |
+
|
20 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
21 |
+
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[
|
22 |
+
0] >= 8 else torch.float16
|
23 |
+
|
24 |
+
parser = argparse.ArgumentParser(description="CogVLM2-Video CLI Demo")
|
25 |
+
parser.add_argument('--quant', type=int, choices=[4, 8], help='Enable 4-bit or 8-bit precision loading', default=0)
|
26 |
+
args = parser.parse_args([])
|
27 |
+
|
28 |
+
|
29 |
+
def load_video(video_data, strategy='chat'):
|
30 |
+
bridge.set_bridge('torch')
|
31 |
+
mp4_stream = video_data
|
32 |
+
num_frames = 24
|
33 |
+
decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0))
|
34 |
+
|
35 |
+
frame_id_list = None
|
36 |
+
total_frames = len(decord_vr)
|
37 |
+
if strategy == 'base':
|
38 |
+
clip_end_sec = 60
|
39 |
+
clip_start_sec = 0
|
40 |
+
start_frame = int(clip_start_sec * decord_vr.get_avg_fps())
|
41 |
+
end_frame = min(total_frames,
|
42 |
+
int(clip_end_sec * decord_vr.get_avg_fps())) if clip_end_sec is not None else total_frames
|
43 |
+
frame_id_list = np.linspace(start_frame, end_frame - 1, num_frames, dtype=int)
|
44 |
+
elif strategy == 'chat':
|
45 |
+
timestamps = decord_vr.get_frame_timestamp(np.arange(total_frames))
|
46 |
+
timestamps = [i[0] for i in timestamps]
|
47 |
+
max_second = round(max(timestamps)) + 1
|
48 |
+
frame_id_list = []
|
49 |
+
for second in range(max_second):
|
50 |
+
closest_num = min(timestamps, key=lambda x: abs(x - second))
|
51 |
+
index = timestamps.index(closest_num)
|
52 |
+
frame_id_list.append(index)
|
53 |
+
if len(frame_id_list) >= num_frames:
|
54 |
+
break
|
55 |
+
|
56 |
+
video_data = decord_vr.get_batch(frame_id_list)
|
57 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
58 |
+
return video_data
|
59 |
+
|
60 |
+
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
62 |
+
MODEL_PATH,
|
63 |
+
trust_remote_code=True,
|
64 |
+
# padding_side="left"
|
65 |
+
)
|
66 |
+
|
67 |
+
model = AutoModelForCausalLM.from_pretrained(
|
68 |
+
MODEL_PATH,
|
69 |
+
torch_dtype=TORCH_TYPE,
|
70 |
+
trust_remote_code=True
|
71 |
+
).eval().to(DEVICE)
|
72 |
+
|
73 |
+
|
74 |
+
def predict(prompt, video_data, temperature):
|
75 |
+
strategy = 'chat'
|
76 |
+
|
77 |
+
video = load_video(video_data, strategy=strategy)
|
78 |
+
|
79 |
+
history = []
|
80 |
+
query = prompt
|
81 |
+
inputs = model.build_conversation_input_ids(
|
82 |
+
tokenizer=tokenizer,
|
83 |
+
query=query,
|
84 |
+
images=[video],
|
85 |
+
history=history,
|
86 |
+
template_version=strategy
|
87 |
+
)
|
88 |
+
inputs = {
|
89 |
+
'input_ids': inputs['input_ids'].unsqueeze(0).to('cuda'),
|
90 |
+
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to('cuda'),
|
91 |
+
'attention_mask': inputs['attention_mask'].unsqueeze(0).to('cuda'),
|
92 |
+
'images': [[inputs['images'][0].to('cuda').to(TORCH_TYPE)]],
|
93 |
+
}
|
94 |
+
gen_kwargs = {
|
95 |
+
"max_new_tokens": 2048,
|
96 |
+
"pad_token_id": 128002,
|
97 |
+
"top_k": 1,
|
98 |
+
"do_sample": False,
|
99 |
+
"top_p": 0.1,
|
100 |
+
"temperature": temperature,
|
101 |
+
}
|
102 |
+
with torch.no_grad():
|
103 |
+
outputs = model.generate(**inputs, **gen_kwargs)
|
104 |
+
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
105 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
106 |
+
return response
|
107 |
+
|
108 |
+
|
109 |
+
def test():
|
110 |
+
prompt = "Please describe this video in detail."
|
111 |
+
temperature = 0.1
|
112 |
+
video_data = open('test.mp4', 'rb').read()
|
113 |
+
response = predict(prompt, video_data, temperature)
|
114 |
+
print(response)
|
115 |
+
|
116 |
+
|
117 |
+
if __name__ == '__main__':
|
118 |
+
test()
|
119 |
+
|
120 |
```
|
121 |
|
122 |
+
## 模型协议
|
123 |
+
|
124 |
+
此模型根据 CogVLM2 [LICENSE](https://modelscope.cn/models/ZhipuAI/cogvlm2-video-llama3-base/file/view/master?fileName=LICENSE&status=0) 发布。对于使用 Meta Llama 3 构建的模型,还请遵守
|
125 |
+
[LLAMA3_LICENSE](https://modelscope.cn/models/ZhipuAI/cogvlm2-video-llama3-base/file/view/master?fileName=LLAMA3_LICENSE&status=0)。
|
126 |
+
|
127 |
+
## 引用
|
128 |
+
|
129 |
+
🌟 If you find our work helpful, please leave us a star and cite our paper.
|
130 |
+
|
131 |
+
```
|
132 |
+
@article{yang2024cogvideox,
|
133 |
+
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
|
134 |
+
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
|
135 |
+
journal={arXiv preprint arXiv:2408.06072},
|
136 |
+
year={2024}
|
137 |
+
}
|
138 |
+
```
|
README_zh.md
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CogVLM2-Llama3-Caption
|
2 |
+
|
3 |
+
<div align="center">
|
4 |
+
<img src=https://raw.githubusercontent.com/THUDM/CogVLM2/cf9cb3c60a871e0c8e5bde7feaf642e3021153e6/resources/logo.svg>
|
5 |
+
</div>
|
6 |
+
|
7 |
+
# Introduction
|
8 |
+
|
9 |
+
Typically, most video data does not come with corresponding descriptive text, so it is necessary to convert the video
|
10 |
+
data into textual descriptions to provide the essential training data for text-to-video models.
|
11 |
+
|
12 |
+
## Usage
|
13 |
+
|
14 |
+
```python
|
15 |
+
import io
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
from decord import cpu, VideoReader, bridge
|
19 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
20 |
+
import argparse
|
21 |
+
|
22 |
+
MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
|
23 |
+
|
24 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
25 |
+
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[
|
26 |
+
0] >= 8 else torch.float16
|
27 |
+
|
28 |
+
parser = argparse.ArgumentParser(description="CogVLM2-Video CLI Demo")
|
29 |
+
parser.add_argument('--quant', type=int, choices=[4, 8], help='Enable 4-bit or 8-bit precision loading', default=0)
|
30 |
+
args = parser.parse_args([])
|
31 |
+
|
32 |
+
|
33 |
+
def load_video(video_data, strategy='chat'):
|
34 |
+
bridge.set_bridge('torch')
|
35 |
+
mp4_stream = video_data
|
36 |
+
num_frames = 24
|
37 |
+
decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0))
|
38 |
+
|
39 |
+
frame_id_list = None
|
40 |
+
total_frames = len(decord_vr)
|
41 |
+
if strategy == 'base':
|
42 |
+
clip_end_sec = 60
|
43 |
+
clip_start_sec = 0
|
44 |
+
start_frame = int(clip_start_sec * decord_vr.get_avg_fps())
|
45 |
+
end_frame = min(total_frames,
|
46 |
+
int(clip_end_sec * decord_vr.get_avg_fps())) if clip_end_sec is not None else total_frames
|
47 |
+
frame_id_list = np.linspace(start_frame, end_frame - 1, num_frames, dtype=int)
|
48 |
+
elif strategy == 'chat':
|
49 |
+
timestamps = decord_vr.get_frame_timestamp(np.arange(total_frames))
|
50 |
+
timestamps = [i[0] for i in timestamps]
|
51 |
+
max_second = round(max(timestamps)) + 1
|
52 |
+
frame_id_list = []
|
53 |
+
for second in range(max_second):
|
54 |
+
closest_num = min(timestamps, key=lambda x: abs(x - second))
|
55 |
+
index = timestamps.index(closest_num)
|
56 |
+
frame_id_list.append(index)
|
57 |
+
if len(frame_id_list) >= num_frames:
|
58 |
+
break
|
59 |
+
|
60 |
+
video_data = decord_vr.get_batch(frame_id_list)
|
61 |
+
video_data = video_data.permute(3, 0, 1, 2)
|
62 |
+
return video_data
|
63 |
+
|
64 |
+
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
66 |
+
MODEL_PATH,
|
67 |
+
trust_remote_code=True,
|
68 |
+
# padding_side="left"
|
69 |
+
)
|
70 |
+
|
71 |
+
model = AutoModelForCausalLM.from_pretrained(
|
72 |
+
MODEL_PATH,
|
73 |
+
torch_dtype=TORCH_TYPE,
|
74 |
+
trust_remote_code=True
|
75 |
+
).eval().to(DEVICE)
|
76 |
+
|
77 |
+
|
78 |
+
def predict(prompt, video_data, temperature):
|
79 |
+
strategy = 'chat'
|
80 |
+
|
81 |
+
video = load_video(video_data, strategy=strategy)
|
82 |
+
|
83 |
+
history = []
|
84 |
+
query = prompt
|
85 |
+
inputs = model.build_conversation_input_ids(
|
86 |
+
tokenizer=tokenizer,
|
87 |
+
query=query,
|
88 |
+
images=[video],
|
89 |
+
history=history,
|
90 |
+
template_version=strategy
|
91 |
+
)
|
92 |
+
inputs = {
|
93 |
+
'input_ids': inputs['input_ids'].unsqueeze(0).to('cuda'),
|
94 |
+
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to('cuda'),
|
95 |
+
'attention_mask': inputs['attention_mask'].unsqueeze(0).to('cuda'),
|
96 |
+
'images': [[inputs['images'][0].to('cuda').to(TORCH_TYPE)]],
|
97 |
+
}
|
98 |
+
gen_kwargs = {
|
99 |
+
"max_new_tokens": 2048,
|
100 |
+
"pad_token_id": 128002,
|
101 |
+
"top_k": 1,
|
102 |
+
"do_sample": False,
|
103 |
+
"top_p": 0.1,
|
104 |
+
"temperature": temperature,
|
105 |
+
}
|
106 |
+
with torch.no_grad():
|
107 |
+
outputs = model.generate(**inputs, **gen_kwargs)
|
108 |
+
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
109 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
110 |
+
return response
|
111 |
+
|
112 |
+
|
113 |
+
def test():
|
114 |
+
prompt = "Please describe this video in detail."
|
115 |
+
temperature = 0.1
|
116 |
+
video_data = open('test.mp4', 'rb').read()
|
117 |
+
response = predict(prompt, video_data, temperature)
|
118 |
+
print(response)
|
119 |
+
|
120 |
+
|
121 |
+
if __name__ == '__main__':
|
122 |
+
test()
|
123 |
+
|
124 |
+
```
|
125 |
+
|
126 |
+
## License
|
127 |
+
|
128 |
+
This model is released under the
|
129 |
+
CogVLM2 [LICENSE](https://modelscope.cn/models/ZhipuAI/cogvlm2-video-llama3-base/file/view/master?fileName=LICENSE&status=0).
|
130 |
+
For models built with Meta Llama 3, please also adhere to
|
131 |
+
the [LLAMA3_LICENSE](https://modelscope.cn/models/ZhipuAI/cogvlm2-video-llama3-base/file/view/master?fileName=LLAMA3_LICENSE&status=0).
|
132 |
+
|
133 |
+
## Citation
|
134 |
+
|
135 |
+
🌟 If you find our work helpful, please leave us a star and cite our paper.
|
136 |
+
|
137 |
+
```
|
138 |
+
@article{yang2024cogvideox,
|
139 |
+
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
|
140 |
+
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
|
141 |
+
journal={arXiv preprint arXiv:2408.06072},
|
142 |
+
year={2024}
|
143 |
+
}
|