|
from typing import Literal
|
|
from transformers import PretrainedConfig
|
|
|
|
|
|
class Cogvlm2(PretrainedConfig):
|
|
_auto_class = "AutoConfig"
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=128256,
|
|
hidden_size=4096,
|
|
intermediate_size=14336,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=32,
|
|
num_multi_query_heads=8,
|
|
hidden_act='silu',
|
|
max_position_embeddings=8192,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-05,
|
|
template_version: Literal["base", "chat"] = "chat",
|
|
bos_token_id=128000,
|
|
eos_token_id=128001,
|
|
tie_word_embeddings=False,
|
|
use_cache=True,
|
|
**kwargs,
|
|
):
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_multi_query_heads = num_multi_query_heads
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.initializer_range = initializer_range
|
|
self.vocab_size = vocab_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.hidden_act = hidden_act
|
|
self.template_version = template_version
|
|
self.use_cache = use_cache
|
|
super().__init__(
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|