Ubuntu
commited on
Commit
•
397fc1e
1
Parent(s):
d613393
english readme
Browse files- README.md +10 -8
- README_en.md +54 -0
- generation_config.json +13 -0
README.md
CHANGED
@@ -15,11 +15,15 @@ inference: false
|
|
15 |
|
16 |
# GLM-4-9B
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
我们在一些典型任务上对 GLM-4-9B 基座模型进行了评测,结果如下:
|
25 |
|
@@ -31,14 +35,12 @@ GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开
|
|
31 |
| GLM-4-9B | **74.7** | **77.1** | **34.3** | **84.0** | **30.4** | **70.1** |
|
32 |
|
33 |
|
34 |
-
|
35 |
|
36 |
## 协议
|
37 |
|
38 |
GLM-4 模型的权重的使用则需要遵循 [LICENSE](LICENSE)。
|
39 |
|
40 |
-
Rhe use of the GLM-4 model weights needs to comply with the [LICENSE](LICENSE).
|
41 |
-
|
42 |
## 引用
|
43 |
|
44 |
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
|
|
|
15 |
|
16 |
# GLM-4-9B
|
17 |
|
18 |
+
Read this in [English](README_en.md)
|
19 |
+
|
20 |
+
GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 在语义、数学、推理、代码和知识等多方面的数据集测评中,
|
21 |
+
**GLM-4-9B** 及其人类偏好对齐的版本 **GLM-4-9B-Chat** 均表现出超越 Llama-3-8B 的卓越性能。除了能进行多轮对话,GLM-4-9B-Chat
|
22 |
+
还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。本代模型增加了多语言支持,支持包括日语,韩语,德语在内的
|
23 |
+
26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的 **GLM-4-9B-Chat-1M** 模型和基于 GLM-4-9B 的多模态模型
|
24 |
+
GLM-4V-9B。**GLM-4V-9B** 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B
|
25 |
+
表现出超越 GPT-4-turbo-2024-04-09、Gemini
|
26 |
+
1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。
|
27 |
|
28 |
我们在一些典型任务上对 GLM-4-9B 基座模型进行了评测,结果如下:
|
29 |
|
|
|
35 |
| GLM-4-9B | **74.7** | **77.1** | **34.3** | **84.0** | **30.4** | **70.1** |
|
36 |
|
37 |
|
38 |
+
**This repository is the base version of GLM-4-9B, supporting `8K` context length.**
|
39 |
|
40 |
## 协议
|
41 |
|
42 |
GLM-4 模型的权重的使用则需要遵循 [LICENSE](LICENSE)。
|
43 |
|
|
|
|
|
44 |
## 引用
|
45 |
|
46 |
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
|
README_en.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GLM-4-9B-Chat-1M
|
2 |
+
|
3 |
+
## Model Introduction
|
4 |
+
|
5 |
+
GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu
|
6 |
+
AI. In the evaluation of data sets in semantics, mathematics, reasoning, code, and knowledge, **GLM-4-9B**
|
7 |
+
and its human preference-aligned version **GLM-4-9B-Chat** have shown superior performance beyond Llama-3-8B. In
|
8 |
+
addition to multi-round conversations, GLM-4-9B-Chat also has advanced features such as web browsing, code execution,
|
9 |
+
custom tool calls (Function Call), and long text
|
10 |
+
reasoning (supporting up to 128K context). This generation of models has added multi-language support, supporting 26
|
11 |
+
languages including Japanese, Korean, and German. We have also launched the **GLM-4-9B-Chat-1M** model that supports 1M
|
12 |
+
context length (about 2 million Chinese characters) and the multimodal model GLM-4V-9B based on GLM-4-9B.
|
13 |
+
**GLM-4V-9B** possesses dialogue capabilities in both Chinese and English at a high resolution of 1120*1120.
|
14 |
+
In various multimodal evaluations, including comprehensive abilities in Chinese and English, perception & reasoning,
|
15 |
+
text recognition, and chart understanding, GLM-4V-9B demonstrates superior performance compared to
|
16 |
+
GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.
|
17 |
+
|
18 |
+
We evaluated the GLM-4-9B base model on some typical tasks, and the results are as follows:
|
19 |
+
|
20 |
+
| Model | MMLU | C-Eval | GPQA | GSM8K | MATH | HumanEval |
|
21 |
+
|:--------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:---------:|
|
22 |
+
| Llama-3-8B | 66.6 | 51.2 | - | 45.8 | - | - |
|
23 |
+
| Llama-3-8B-Instruct | 68.4 | 51.3 | 34.2 | 79.6 | 30.0 | 62.2 |
|
24 |
+
| ChatGLM3-6B-Base | 61.4 | 69.0 | - | 72.3 | 25.7 | - |
|
25 |
+
| GLM-4-9B | **74.7** | **77.1** | **34.3** | **84.0** | **30.4** | **70.1** |
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
## LICENSE
|
30 |
+
|
31 |
+
The weights of the GLM-4 model are available under the terms of [LICENSE](LICENSE).
|
32 |
+
|
33 |
+
## Citations
|
34 |
+
|
35 |
+
If you find our work useful, please consider citing the following paper.
|
36 |
+
|
37 |
+
```
|
38 |
+
@article{zeng2022glm,
|
39 |
+
title={Glm-130b: An open bilingual pre-trained model},
|
40 |
+
author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
|
41 |
+
journal={arXiv preprint arXiv:2210.02414},
|
42 |
+
year={2022}
|
43 |
+
}
|
44 |
+
```
|
45 |
+
|
46 |
+
```
|
47 |
+
@inproceedings{du2022glm,
|
48 |
+
title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
|
49 |
+
author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
|
50 |
+
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
|
51 |
+
pages={320--335},
|
52 |
+
year={2022}
|
53 |
+
}
|
54 |
+
```
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token_id": [
|
3 |
+
151329,
|
4 |
+
151336,
|
5 |
+
151338
|
6 |
+
],
|
7 |
+
"pad_token_id": 151329,
|
8 |
+
"do_sample": true,
|
9 |
+
"temperature": 0.8,
|
10 |
+
"max_length": 8192,
|
11 |
+
"top_p": 0.8,
|
12 |
+
"transformers_version": "4.38.2"
|
13 |
+
}
|