File size: 7,873 Bytes
c6547f4
2528f95
c6547f4
5c0e426
 
 
 
 
 
 
c6547f4
2528f95
c6547f4
5c0e426
 
 
 
 
c6547f4
 
f4df4fa
c6547f4
0c0a987
 
 
 
 
 
c6547f4
5c0e426
c6547f4
 
5c0e426
c6547f4
5c0e426
 
 
c6547f4
5c0e426
c6547f4
a493283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6547f4
5c0e426
c6547f4
a493283
 
 
 
 
 
 
 
 
 
 
 
 
 
c6547f4
5c0e426
c6547f4
5c0e426
 
21f2ce1
5c0e426
 
c6547f4
5c0e426
 
 
 
 
c6547f4
 
5c0e426
 
 
c6547f4
5c0e426
 
 
 
 
c6547f4
5c0e426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbea248
 
5c0e426
 
f4df4fa
5c0e426
 
28cc1fd
5c0e426
f4df4fa
28cc1fd
5c0e426
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
base_model: TIGER-Lab/Mantis-8B-siglip-llama3-pretraind
tags:
- multimodal
- lmm
- vlm
- llava
- siglip
- llama3
- mantis
model-index:
- name: Mantis-8B-siglip-llama3
  results: []
license: llama3
datasets:
- TIGER-Lab/Mantis-Instruct
language:
- en
---

# 🔥 Mantis (TMLR 2024)

[Paper](https://arxiv.org/abs/2405.01483) | 
[Website](https://tiger-ai-lab.github.io/Mantis/) | 
[Github](https://github.com/TIGER-AI-Lab/Mantis) | 
[Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) | 
[Demo](https://huggingface.co/spaces/TIGER-Lab/Mantis) |
[Wandb](https://api.wandb.ai/links/dongfu/iydlrqgj)

![Mantis](https://tiger-ai-lab.github.io/Mantis/images/radar_chart.png)


## Summary

- Mantis is an LLaMA-3 based LMM with **interleaved text and image as inputs**, train on Mantis-Instruct under academic-level resources (i.e. 36 hours on 16xA100-40G).
- Mantis is trained to have multi-image skills including co-reference, reasoning, comparing, temporal understanding.
- Mantis reaches the state-of-the-art performance on five multi-image benchmarks (NLVR2, Q-Bench, BLINK, MVBench, Mantis-Eval), and also maintain a strong single-image performance on par with CogVLM and Emu2.

## Multi-Image Performance

| Models             | Size |  Format  | NLVR2 | Q-Bench | Mantis-Eval | BLINK | MVBench |  Avg |
|--------------------|:----:|:--------:|:-----:|:-------:|:-----------:|:-----:|:-------:|:----:|
| GPT-4V             |   -  | sequence | 88.80 |  76.52  |    62.67    | 51.14 |  43.50  | 64.5 |
| Open Source Models |      |          |       |         |             |       |         |      |
| Random             |   -  |     -    | 48.93 |  40.20  |    23.04    | 38.09 |  27.30  | 35.5 |
| Kosmos2            | 1.6B |   merge  | 49.00 |  35.10  |    30.41    | 37.50 |  21.62  | 34.7 |
| LLaVA-v1.5         |  7B  |   merge  | 53.88 |  49.32  |    31.34    | 37.13 |  36.00  | 41.5 |
| LLava-V1.6         |  7B  |   merge  | 58.88 |  54.80  |    45.62    | 39.55 |  40.90  | 48.0 |
| Qwen-VL-Chat       |  7B  |   merge  | 58.72 |  45.90  |    39.17    | 31.17 |  42.15  | 43.4 |
| Fuyu               |  8B  |   merge  | 51.10 |  49.15  |    27.19    | 36.59 |  30.20  | 38.8 |
| BLIP-2             |  13B |   merge  | 59.42 |  51.20  |    49.77    | 39.45 |  31.40  | 46.2 |
| InstructBLIP       |  13B |   merge  | 60.26 |  44.30  |    45.62    | 42.24 |  32.50  | 45.0 |
| CogVLM             |  17B |   merge  | 58.58 |  53.20  |    45.16    | 41.54 |  37.30  | 47.2 |
| OpenFlamingo       |  9B  | sequence | 36.41 |  19.60  |    12.44    | 39.18 |   7.90  | 23.1 |
| Otter-Image        |  9B  | sequence | 49.15 |  17.50  |    14.29    | 36.26 |  15.30  | 26.5 |
| Idefics1           |  9B  | sequence | 54.63 |  30.60  |    28.11    | 24.69 |  26.42  | 32.9 |
| VideoLLaVA         |  7B  | sequence | 56.48 |  45.70  |    35.94    | 38.92 |  44.30  | 44.3 |
| Emu2-Chat          |  37B | sequence | 58.16 |  50.05  |    37.79    | 36.20 |  39.72  | 44.4 |
| Vila               |  8B  | sequence | 76.45 |  45.70  |    51.15    | 39.30 |  49.40  | 52.4 |
| Idefics2           |  8B  | sequence | 86.87 |  57.00  |    48.85    | 45.18 |  29.68  | 53.5 |
| Mantis-CLIP        |  8B  | sequence | 84.66 |  66.00  |    55.76    | 47.06 |  48.30  | 60.4 |
| Mantis-SIGLIP      |  8B  | sequence | 87.43 |  69.90  |    **59.45**    | 46.35 |  50.15  | 62.7 |
| Mantis-Flamingo    |  9B  | sequence | 52.96 |  46.80  |    32.72    | 38.00 |  40.83  | 42.3 |
| Mantis-Idefics2    |  8B  | sequence | **89.71** |  **75.20**  |    57.14    | **49.05** |  **51.38**  | **64.5** |
| $\Delta$ over SOTA |   -  |     -    |  +2.84 |  +18.20  |     +8.30    |  +3.87 |   +1.98  | +11.0 |

## Single-Image Performance

| Model           | Size | TextVQA |  VQA |  MMB | MMMU | OKVQA |  SQA | MathVista |  Avg |
|-----------------|:----:|:-------:|:----:|:----:|:----:|:-----:|:----:|:---------:|:----:|
| OpenFlamingo    |  9B  |   46.3  | 58.0 | 32.4 | 28.7 |  51.4 | 45.7 |    18.6   | 40.2 |
| Idefics1        |  9B  |   39.3  | 68.8 | 45.3 | 32.5 |  50.4 | 51.6 |    21.1   | 44.1 |
| InstructBLIP    |  7B  |   33.6  | 75.2 | 38.3 | 30.6 |  45.2 | 70.6 |    24.4   | 45.4 |
| Yi-VL           |  6B  |   44.8  | 72.5 | 68.4 | 39.1 |  51.3 | 71.7 |    29.7   | 53.9 |
| Qwen-VL-Chat    |  7B  |   63.8  | 78.2 | 61.8 | 35.9 |  56.6 | 68.2 |    15.5   | 54.3 |
| LLaVA-1.5       |  7B  |   58.2  | 76.6 | 64.8 | 35.3 |  53.4 | 70.4 |    25.6   | 54.9 |
| Emu2-Chat       |  37B |   <u>66.6</u>  | **84.9** | 63.6 | 36.3 |  **64.8** | 65.3 |    30.7   | 58.9 |
| CogVLM          |  17B |   **70.4**  | <u>82.3</u> | 65.8 | 32.1 |  <u>64.8</u> | 65.6 |    35.0   | 59.4 |
| Idefics2        |  8B  |   70.4  | 79.1 | <u>75.7</u> | **43.0** |  53.5 | **86.5** |    **51.4**   | **65.7** |
| Mantis-CLIP     |  8B  |   56.4  | 73.0 | 66.0 | 38.1 |  53.0 | 73.8 |    31.7   | 56.0 |
| Mantis-SigLIP   |  8B  |   59.2  | 74.9 | 68.7 | 40.1 |  55.4 | 74.9 |    34.4   | 58.2 |
| Mantis-Idefics2 |  8B  |   63.5  | 77.6 | 75.7 | <u>41.1</u> |  52.6 | <u>81.3</u> |    <u>40.4</u>   | <u>61.7</u> |

## How to use

### Installation
```bash
# This only installs minimum packages (torch, transformers, accelerate) for inference, no redundant packages are installed.
pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
```

### Run example inference:
```python
from mantis.models.mllava import chat_mllava
from PIL import Image
import torch


image1 = "image1.jpg"
image2 = "image2.jpg"
images = [Image.open(image1), Image.open(image2)]

# load processor and model
from mantis.models.mllava import MLlavaProcessor, LlavaForConditionalGeneration
processor = MLlavaProcessor.from_pretrained("TIGER-Lab/Mantis-8B-siglip-llama3")
attn_implementation = None # or "flash_attention_2"
model = LlavaForConditionalGeneration.from_pretrained("TIGER-Lab/Mantis-8B-siglip-llama3", device_map="cuda", torch_dtype=torch.bfloat16, attn_implementation=attn_implementation)

generation_kwargs = {
    "max_new_tokens": 1024,
    "num_beams": 1,
    "do_sample": False
}

# chat
text = "Describe the difference of <image> and <image> as much as you can."
response, history = chat_mllava(text, images, model, processor, **generation_kwargs)

print("USER: ", text)
print("ASSISTANT: ", response)

text = "How many wallets are there in image 1 and image 2 respectively?"
response, history = chat_mllava(text, images, model, processor, history=history, **generation_kwargs)

print("USER: ", text)
print("ASSISTANT: ", response)

"""
USER:  Describe the difference of <image> and <image> as much as you can.
ASSISTANT:  The second image has more variety in terms of colors and designs. While the first image only shows two brown leather pouches, the second image features four different pouches in various colors and designs, including a purple one with a gold coin, a red one with a gold coin, a black one with a gold coin, and a brown one with a gold coin. This variety makes the second image more visually interesting and dynamic.
USER:  How many wallets are there in image 1 and image 2 respectively?
ASSISTANT:  There are two wallets in image 1, and four wallets in image 2.
"""
```

### Training
See [mantis/train](https://github.com/TIGER-AI-Lab/Mantis/tree/main/mantis/train) for details

### Evaluation
See [mantis/benchmark](https://github.com/TIGER-AI-Lab/Mantis/tree/main/mantis/benchmark) for details

**Please cite our paper or give a star to out Github repo if you find this model useful**

## Citation
```
@article{Jiang2024MANTISIM,
  title={MANTIS: Interleaved Multi-Image Instruction Tuning},
  author={Dongfu Jiang and Xuan He and Huaye Zeng and Cong Wei and Max W.F. Ku and Qian Liu and Wenhu Chen},
  journal={Transactions on Machine Learning Research},
  year={2024},
  volume={2024},
  url={https://openreview.net/forum?id=skLtdUVaJa}
}
```