Update for huggingface hub
Browse files- demo.py +20 -0
- lyraChatGLM/__init__.py +1 -0
- lyraChatGLM/config.py +31 -0
- lyraChatGLM/lyra_glm.py +174 -0
- lyraChatGLM/model.py +625 -0
- models/config.ini +13 -0
- models/tokenization_chatglm.py +443 -0
- models/tokenizer_config.json +20 -0
- requirements.txt +8 -0
demo.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from lyraChatGLM import LyraChatGLM6B
|
2 |
+
|
3 |
+
model_path = "./models/1-gpu-fp16.h5"
|
4 |
+
tokenizer_path = "./models"
|
5 |
+
data_type = "fp16"
|
6 |
+
int8_mode = 0
|
7 |
+
max_output_length = 150
|
8 |
+
arch = "Ampere" # Ampere or Volta
|
9 |
+
|
10 |
+
model = LyraChatGLM6B(model_path, tokenizer_path, data_type, int8_mode, arch)
|
11 |
+
prompt = "今天天气大概 25度,有点小雨,吹着风,我想去户外散步,应该穿什么样的衣服裤子鞋子搭配。"
|
12 |
+
test_batch_size = 256
|
13 |
+
|
14 |
+
prompts = [prompt, ]
|
15 |
+
|
16 |
+
|
17 |
+
# If you want to get different output in same batch, you can set do_sample to True
|
18 |
+
output_texts = model.generate(prompts, output_length=max_output_length,top_k=30, top_p=0.85, temperature=0.35, repetition_penalty=1.2, do_sample=False)
|
19 |
+
|
20 |
+
print(output_texts)
|
lyraChatGLM/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .lyra_glm import LyraChatGLM6B
|
lyraChatGLM/config.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
|
5 |
+
@dataclasses.dataclass
|
6 |
+
class ChatGLM6BParam:
|
7 |
+
num_heads: int = 32
|
8 |
+
size_per_head: int = 128
|
9 |
+
inter_size: int = 16384
|
10 |
+
num_layers: int = 28
|
11 |
+
vocab_size: int = 130528
|
12 |
+
start_id: Optional[int] = 130004
|
13 |
+
end_id: Optional[int] = 130005
|
14 |
+
tensor_para_size: int = 1
|
15 |
+
pipeline_para_size: int = 1
|
16 |
+
remove_padding: bool = True
|
17 |
+
shared_contexts_ratio: float = 1.0
|
18 |
+
layernorm_eps: float = 1e-5
|
19 |
+
weights_data_type: str = "fp16"
|
20 |
+
|
21 |
+
def __post_init__(self):
|
22 |
+
if not 0.0 <= self.shared_contexts_ratio <= 1.0:
|
23 |
+
raise ValueError(
|
24 |
+
f'Got an invalid value of shared_context_ratio '
|
25 |
+
f'{self.shared_contexts_ratio} - range: [0.0, 1.0]')
|
26 |
+
|
27 |
+
def asdict(self):
|
28 |
+
return dataclasses.asdict(self)
|
29 |
+
|
30 |
+
|
31 |
+
CHATGLM_6B_PARAM = ChatGLM6BParam()
|
lyraChatGLM/lyra_glm.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import configparser
|
4 |
+
import pathlib
|
5 |
+
import typing
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import transformers
|
9 |
+
|
10 |
+
from .config import CHATGLM_6B_PARAM
|
11 |
+
from .model import ChatGLM6BModel
|
12 |
+
|
13 |
+
|
14 |
+
class LyraChatGLM6B:
|
15 |
+
def __init__(self, model_path, tokenizer_path=None, dtype='fp16', int8_mode=0, arch="Ampere") -> None:
|
16 |
+
self.model_path = model_path
|
17 |
+
self.tokenizer_path = tokenizer_path
|
18 |
+
self.dtype = dtype
|
19 |
+
self.arch=arch
|
20 |
+
if dtype != 'int8':
|
21 |
+
int8_mode = 0
|
22 |
+
self.int8_mode = int8_mode
|
23 |
+
|
24 |
+
self.model, self.tokenizer = self.load_model_and_tokenizer()
|
25 |
+
if not (arch in ["Ampere", "Volta"]):
|
26 |
+
raise ValueError("Only support GPU device Ampere(A100,A10) or Volta(V100)")
|
27 |
+
|
28 |
+
print("Got model and tokenizer")
|
29 |
+
|
30 |
+
def load_model_and_tokenizer(self):
|
31 |
+
if self.tokenizer_path is None:
|
32 |
+
tokenizer_path = self.model_path
|
33 |
+
else:
|
34 |
+
tokenizer_path = self.tokenizer_path
|
35 |
+
|
36 |
+
print(f'Loading tokenizer from {pathlib.Path(tokenizer_path).parent}')
|
37 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
|
38 |
+
|
39 |
+
checkpoint_path = pathlib.Path(self.model_path)
|
40 |
+
|
41 |
+
config_path = checkpoint_path.parent / 'config.ini'
|
42 |
+
|
43 |
+
if config_path.exists():
|
44 |
+
# Read model params from config.
|
45 |
+
cfg = configparser.ConfigParser()
|
46 |
+
cfg.read(config_path)
|
47 |
+
model_name = 'glm6b'
|
48 |
+
inference_data_type = self.dtype
|
49 |
+
if inference_data_type == None:
|
50 |
+
inference_data_type = cfg.get(model_name, "weight_data_type")
|
51 |
+
model_args = dict(
|
52 |
+
head_num=cfg.getint(model_name, 'head_num'),
|
53 |
+
size_per_head=cfg.getint(model_name, "size_per_head"),
|
54 |
+
layer_num=cfg.getint(model_name, "num_layer"),
|
55 |
+
tensor_para_size=cfg.getint(model_name, "tensor_para_size"),
|
56 |
+
vocab_size=cfg.getint(model_name, "vocab_size"),
|
57 |
+
start_id=cfg.getint(model_name, "start_id"),
|
58 |
+
end_id=cfg.getint(model_name, "end_id"),
|
59 |
+
weights_data_type=cfg.get(model_name, "weight_data_type"),
|
60 |
+
layernorm_eps=cfg.getfloat(model_name, 'layernorm_eps'),
|
61 |
+
inference_data_type=inference_data_type)
|
62 |
+
else:
|
63 |
+
inference_data_type = self.dtype
|
64 |
+
if inference_data_type == None:
|
65 |
+
inference_data_type = CHATGLM_6B_PARAM.weights_data_type
|
66 |
+
model_args = dict(head_num=CHATGLM_6B_PARAM.num_heads,
|
67 |
+
size_per_head=CHATGLM_6B_PARAM.size_per_head,
|
68 |
+
vocab_size=CHATGLM_6B_PARAM.vocab_size,
|
69 |
+
start_id=CHATGLM_6B_PARAM.start_id or tokenizer.bos_token_id,
|
70 |
+
end_id=CHATGLM_6B_PARAM.end_id or tokenizer.eos_token_id,
|
71 |
+
layer_num=CHATGLM_6B_PARAM.num_layers,
|
72 |
+
tensor_para_size=CHATGLM_6B_PARAM.tensor_para_size,
|
73 |
+
weights_data_type=CHATGLM_6B_PARAM.weights_data_type,
|
74 |
+
layernorm_eps=CHATGLM_6B_PARAM.layernorm_eps,
|
75 |
+
inference_data_type=inference_data_type,
|
76 |
+
)
|
77 |
+
|
78 |
+
# update common parameters
|
79 |
+
model_args.update(dict(
|
80 |
+
rotary_embedding_dim=64,
|
81 |
+
max_seq_len=0, # for position seq embedding
|
82 |
+
pipeline_para_size=CHATGLM_6B_PARAM.pipeline_para_size,
|
83 |
+
shared_contexts_ratio=CHATGLM_6B_PARAM.shared_contexts_ratio,
|
84 |
+
int8_mode=self.int8_mode
|
85 |
+
))
|
86 |
+
|
87 |
+
print('[INFO] Load Our Highly Optimized LyraChatGLM6B model')
|
88 |
+
for k, v in model_args.items():
|
89 |
+
print(f' - {k.ljust(25, ".")}: {v}')
|
90 |
+
|
91 |
+
# Check sanity and consistency between the model and tokenizer.
|
92 |
+
checklist = ['head_num', 'size_per_head', 'vocab_size', 'layer_num',
|
93 |
+
'tensor_para_size', 'tensor_para_size', 'weights_data_type']
|
94 |
+
if None in [model_args[k] for k in checklist]:
|
95 |
+
none_params = [p for p in checklist if model_args[p] is None]
|
96 |
+
print(f'[WARNING] Found None parameters {none_params}. They must '
|
97 |
+
f'be provided either by config file or CLI arguments.')
|
98 |
+
if model_args['start_id'] != tokenizer.bos_token_id:
|
99 |
+
print('[WARNING] Given start_id is not matched with the bos token '
|
100 |
+
'id of the pretrained tokenizer.')
|
101 |
+
if model_args['end_id'] not in (tokenizer.pad_token_id, tokenizer.eos_token_id):
|
102 |
+
print('[WARNING] Given end_id is not matched with neither pad '
|
103 |
+
'token id nor eos token id of the pretrained tokenizer.')
|
104 |
+
|
105 |
+
print(f'Loading tokenizer from {self.model_path}')
|
106 |
+
model = ChatGLM6BModel(arch=self.arch,**model_args)
|
107 |
+
if not model.load(ckpt_path=self.model_path):
|
108 |
+
print('[WARNING] Skip model loading since no checkpoints are found')
|
109 |
+
|
110 |
+
return model, tokenizer
|
111 |
+
|
112 |
+
def generate(self, prompts: typing.List[str] | str,
|
113 |
+
output_length: int = 512,
|
114 |
+
beam_width: int = 1,
|
115 |
+
top_k: typing.Optional[torch.IntTensor] = 1,
|
116 |
+
top_p: typing.Optional[torch.FloatTensor] = 1.0,
|
117 |
+
beam_search_diversity_rate: typing.Optional[torch.FloatTensor] = 0.0,
|
118 |
+
temperature: typing.Optional[torch.FloatTensor] = 1.0,
|
119 |
+
len_penalty: typing.Optional[torch.FloatTensor] = 0.0,
|
120 |
+
repetition_penalty: typing.Optional[torch.FloatTensor] = 1.0,
|
121 |
+
presence_penalty: typing.Optional[torch.FloatTensor] = None,
|
122 |
+
min_length: typing.Optional[torch.IntTensor] = None,
|
123 |
+
bad_words_list: typing.Optional[torch.IntTensor] = None,
|
124 |
+
do_sample: bool = False,
|
125 |
+
return_output_length: bool = False,
|
126 |
+
return_cum_log_probs: int = 0):
|
127 |
+
#
|
128 |
+
if isinstance(prompts, str):
|
129 |
+
prompts = [prompts, ]
|
130 |
+
|
131 |
+
inputs = prompts
|
132 |
+
|
133 |
+
batch_size = len(inputs)
|
134 |
+
ones_int = torch.ones(size=[batch_size], dtype=torch.int32)
|
135 |
+
ones_float = torch.ones(size=[batch_size], dtype=torch.float32)
|
136 |
+
|
137 |
+
input_token_ids = self.tokenizer(prompts, return_tensors="pt", padding=True).input_ids.int()
|
138 |
+
input_lengths = torch.IntTensor([len(ids) for ids in input_token_ids])
|
139 |
+
mask_positions = torch.IntTensor([seq.index(130001) for seq in input_token_ids.tolist()])
|
140 |
+
|
141 |
+
random_seed = None
|
142 |
+
if do_sample:
|
143 |
+
random_seed = torch.randint(0, 262144, (batch_size,), dtype=torch.long)
|
144 |
+
|
145 |
+
outputs = self.model(start_ids=input_token_ids,
|
146 |
+
start_lengths=input_lengths,
|
147 |
+
mask_positions=mask_positions,
|
148 |
+
output_len=output_length,
|
149 |
+
beam_width=beam_width,
|
150 |
+
top_k=top_k*ones_int,
|
151 |
+
top_p=top_p*ones_float,
|
152 |
+
beam_search_diversity_rate=beam_search_diversity_rate*ones_float,
|
153 |
+
temperature=temperature*ones_float,
|
154 |
+
len_penalty=len_penalty*ones_float,
|
155 |
+
repetition_penalty=repetition_penalty*ones_float,
|
156 |
+
presence_penalty=presence_penalty,
|
157 |
+
min_length=min_length,
|
158 |
+
random_seed=random_seed,
|
159 |
+
bad_words_list=bad_words_list,
|
160 |
+
return_output_length=return_output_length,
|
161 |
+
return_cum_log_probs=return_cum_log_probs)
|
162 |
+
|
163 |
+
if return_cum_log_probs > 0:
|
164 |
+
outputs = outputs[0] # output_token_ids.
|
165 |
+
|
166 |
+
# Slice the generated token ids of the 1st beam result.
|
167 |
+
# output = input tokens + generated tokens.
|
168 |
+
output_token_ids = [out[0, length:].cpu()
|
169 |
+
for out, length in zip(outputs, input_lengths)]
|
170 |
+
|
171 |
+
output_texts = self.tokenizer.batch_decode(
|
172 |
+
output_token_ids, skip_special_tokens=False)
|
173 |
+
|
174 |
+
return output_texts
|
lyraChatGLM/model.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import h5py
|
3 |
+
import pathlib
|
4 |
+
import typing
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.distributed as dist
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
str_type_map = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}
|
12 |
+
|
13 |
+
|
14 |
+
class ChatGLM6BWeights:
|
15 |
+
def __init__(
|
16 |
+
self, head_num, size_per_head, layer_num, vocab_size, max_seq_len, tensor_para_size, pipeline_para_size,
|
17 |
+
weights_data_type: typing.Union[str, np.dtype],
|
18 |
+
inference_data_type: str, has_adapters: bool = False, adapter_inter_size: int = 0, gpt_with_moe: bool = False,
|
19 |
+
has_positional_encoding: bool = False, has_pre_decoder_layernorm: bool = False,
|
20 |
+
has_post_decoder_layernorm: bool = True, int8_mode: int = 0, inter_size: int = 0):
|
21 |
+
assert(head_num % tensor_para_size == 0)
|
22 |
+
if int8_mode == 1:
|
23 |
+
torch_infer_dtype = str_type_map[inference_data_type]
|
24 |
+
assert torch_infer_dtype == torch.float16 or torch_infer_dtype == torch.bfloat16, "Weight only quant only supported for infer type fp16 or bf16."
|
25 |
+
quant = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix
|
26 |
+
self.weight_transpose_calibrate_quantize = lambda x: quant(x, torch.int8)
|
27 |
+
else:
|
28 |
+
assert int8_mode == 0, "Invalid int8 mode for GPT. Must be 0 or 1"
|
29 |
+
|
30 |
+
self.head_num = head_num
|
31 |
+
self.size_per_head = size_per_head
|
32 |
+
self.layer_num = layer_num
|
33 |
+
self.vocab_size = vocab_size
|
34 |
+
self.max_seq_len = max_seq_len
|
35 |
+
self.tensor_para_size = tensor_para_size
|
36 |
+
self.pipeline_para_size = pipeline_para_size
|
37 |
+
self.layers_per_device = layer_num // pipeline_para_size
|
38 |
+
|
39 |
+
self.has_adapters = has_adapters
|
40 |
+
self.adapter_inter_size = adapter_inter_size
|
41 |
+
self.gpt_with_moe = gpt_with_moe
|
42 |
+
self.has_positional_encoding = has_positional_encoding
|
43 |
+
self.has_pre_decoder_layernorm = has_pre_decoder_layernorm
|
44 |
+
self.has_post_decoder_layernorm = has_post_decoder_layernorm
|
45 |
+
|
46 |
+
local_head_num = head_num // tensor_para_size
|
47 |
+
global_head_num = head_num
|
48 |
+
local_hidden_units = local_head_num * size_per_head
|
49 |
+
global_hidden_units = global_head_num * size_per_head
|
50 |
+
local_inter_size = local_hidden_units * 4
|
51 |
+
if inter_size != 0:
|
52 |
+
assert inter_size % tensor_para_size == 0, f"inter_size({inter_size}) \% tensor_para_size({tensor_para_size}) must be 0"
|
53 |
+
local_inter_size = inter_size // tensor_para_size
|
54 |
+
local_adapter_inter_size = self.adapter_inter_size // tensor_para_size
|
55 |
+
|
56 |
+
self.local_head_num = local_head_num
|
57 |
+
self.global_head_num = global_head_num
|
58 |
+
self.local_hidden_units = local_hidden_units
|
59 |
+
self.global_hidden_units = global_hidden_units
|
60 |
+
self.local_inter_size = local_inter_size
|
61 |
+
|
62 |
+
self.int8_mode = int8_mode
|
63 |
+
self.share_embed = False
|
64 |
+
|
65 |
+
if isinstance(weights_data_type, str):
|
66 |
+
try:
|
67 |
+
weights_data_type = {
|
68 |
+
"fp16": np.float16,
|
69 |
+
"fp32": np.float32,
|
70 |
+
"float16": np.float16,
|
71 |
+
"float32": np.float32,
|
72 |
+
}[weights_data_type]
|
73 |
+
except KeyError:
|
74 |
+
raise ValueError(f"Don't know how to interpret weights_data_type: {weights_data_type}")
|
75 |
+
|
76 |
+
assert weights_data_type in [np.float32, np.float16]
|
77 |
+
self.weights_data_type = weights_data_type
|
78 |
+
self.inference_data_type = inference_data_type
|
79 |
+
|
80 |
+
self.w = []
|
81 |
+
self.int8_w = []
|
82 |
+
self.scale = []
|
83 |
+
|
84 |
+
# Transformer blocks
|
85 |
+
self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[self.inference_data_type])]
|
86 |
+
* layer_num) # self_layernorm_gamma
|
87 |
+
self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[self.inference_data_type])]
|
88 |
+
* layer_num) # self_layernorm_beta
|
89 |
+
self.w.extend([torch.zeros(global_hidden_units, local_hidden_units * 3,
|
90 |
+
dtype=str_type_map[self.inference_data_type])] * layer_num) # self_kernel
|
91 |
+
self.w.extend([torch.zeros(local_hidden_units * 3, dtype=str_type_map[self.inference_data_type])]
|
92 |
+
* layer_num) # self_bias
|
93 |
+
self.w.extend(
|
94 |
+
[torch.zeros(local_hidden_units, global_hidden_units, dtype=str_type_map[self.inference_data_type])] *
|
95 |
+
layer_num) # self_output_kernel
|
96 |
+
self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[self.inference_data_type])]
|
97 |
+
* layer_num) # self_output_bias
|
98 |
+
self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[self.inference_data_type])]
|
99 |
+
* layer_num) # ffn_layernorm_gamma
|
100 |
+
self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[self.inference_data_type])]
|
101 |
+
* layer_num) # ffn_layernorm_beta
|
102 |
+
self.w.extend(
|
103 |
+
[torch.zeros(global_hidden_units, local_inter_size, dtype=str_type_map[self.inference_data_type])] *
|
104 |
+
layer_num) # ffn_kernel1
|
105 |
+
self.w.extend([torch.zeros(local_inter_size, dtype=str_type_map[self.inference_data_type])]
|
106 |
+
* layer_num) # ffn_bias1
|
107 |
+
self.w.extend(
|
108 |
+
[torch.zeros(local_inter_size, global_hidden_units, dtype=str_type_map[self.inference_data_type])] *
|
109 |
+
layer_num) # ffn_kernel2
|
110 |
+
self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[self.inference_data_type])]
|
111 |
+
* layer_num) # ffn_bias2
|
112 |
+
|
113 |
+
optional_adapter_offset = 0
|
114 |
+
|
115 |
+
# After Transformer blocks
|
116 |
+
if self.has_pre_decoder_layernorm:
|
117 |
+
self.w.append(torch.zeros(global_hidden_units, dtype=str_type_map[
|
118 |
+
self.inference_data_type])) # embedding layernorm gamma
|
119 |
+
self.w.append(torch.zeros(global_hidden_units, dtype=str_type_map[
|
120 |
+
self.inference_data_type])) # embedding layernorm beta
|
121 |
+
optional_adapter_offset += 2
|
122 |
+
if self.has_post_decoder_layernorm:
|
123 |
+
self.w.append(torch.zeros(global_hidden_units, dtype=str_type_map[
|
124 |
+
self.inference_data_type])) # final layernorm gamma
|
125 |
+
self.w.append(torch.zeros(global_hidden_units, dtype=str_type_map[
|
126 |
+
self.inference_data_type])) # final layernorm beta
|
127 |
+
optional_adapter_offset += 2
|
128 |
+
if self.has_positional_encoding:
|
129 |
+
self.w.append(torch.zeros(max_seq_len, global_hidden_units, dtype=str_type_map[
|
130 |
+
self.inference_data_type])) # position_encoding_table
|
131 |
+
optional_adapter_offset += 1
|
132 |
+
|
133 |
+
self.pre_embed_idx = len(self.w)
|
134 |
+
self.w.append(torch.zeros(vocab_size, global_hidden_units,
|
135 |
+
dtype=str_type_map[self.inference_data_type])) # embedding_table
|
136 |
+
self.post_embed_idx = len(self.w)
|
137 |
+
self.w.append(torch.zeros(vocab_size, global_hidden_units, dtype=str_type_map[
|
138 |
+
self.inference_data_type])) # post embedding_kernel
|
139 |
+
self.adapter_offset = 2 + optional_adapter_offset
|
140 |
+
|
141 |
+
self.w.extend([torch.empty(0, dtype=str_type_map[self.inference_data_type])] * layer_num) # gating_weight
|
142 |
+
self.adapter_offset += layer_num
|
143 |
+
|
144 |
+
# adapters
|
145 |
+
if self.has_adapters:
|
146 |
+
self.w.extend([torch.zeros(global_hidden_units, local_adapter_inter_size,
|
147 |
+
dtype=str_type_map[self.inference_data_type])] * layer_num) # adaptor1_kernel1
|
148 |
+
self.w.extend([torch.zeros(local_adapter_inter_size, dtype=str_type_map[
|
149 |
+
self.inference_data_type])] * layer_num) # adaptor1_bias1
|
150 |
+
self.w.extend([torch.zeros(local_adapter_inter_size, global_hidden_units,
|
151 |
+
dtype=str_type_map[self.inference_data_type])] * layer_num) # adaptor1_kernel2
|
152 |
+
self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[
|
153 |
+
self.inference_data_type])] * layer_num) # adaptor1_bias2
|
154 |
+
self.w.extend([torch.zeros(global_hidden_units, local_adapter_inter_size,
|
155 |
+
dtype=str_type_map[self.inference_data_type])] * layer_num) # adaptor2_kernel1
|
156 |
+
self.w.extend([torch.zeros(local_adapter_inter_size, dtype=str_type_map[
|
157 |
+
self.inference_data_type])] * layer_num) # adaptor2_bias1
|
158 |
+
self.w.extend([torch.zeros(local_adapter_inter_size, global_hidden_units,
|
159 |
+
dtype=str_type_map[self.inference_data_type])] * layer_num) # adaptor2_kernel2
|
160 |
+
self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[
|
161 |
+
self.inference_data_type])] * layer_num) # adaptor2_bias2
|
162 |
+
|
163 |
+
# Initialization
|
164 |
+
self._map(lambda w: torch.nn.init.normal_(w, mean=0., std=1.))
|
165 |
+
|
166 |
+
if (self.int8_mode != 0):
|
167 |
+
self.int8_w.extend([torch.zeros(global_hidden_units, local_hidden_units *
|
168 |
+
3, dtype=torch.int8)] * layer_num) # self_int8_kernel
|
169 |
+
self.scale.extend([torch.zeros(local_hidden_units * 3, dtype=torch.float)] * layer_num) # self_scale
|
170 |
+
self.int8_w.extend([torch.zeros(local_hidden_units, global_hidden_units, dtype=torch.int8)]
|
171 |
+
* layer_num) # self_output_int8_kernel
|
172 |
+
self.scale.extend([torch.zeros(global_hidden_units, dtype=torch.float)] * layer_num) # self_output_scale
|
173 |
+
self.int8_w.extend([torch.zeros(global_hidden_units, local_inter_size,
|
174 |
+
dtype=torch.int8)] * layer_num) # ffn_int8_kernel1
|
175 |
+
self.scale.extend([torch.zeros(local_inter_size, dtype=torch.float)] * layer_num) # ffn_scale1
|
176 |
+
self.int8_w.extend([torch.zeros(local_inter_size, global_hidden_units,
|
177 |
+
dtype=torch.int8)] * layer_num) # ffn_int8_kernel2
|
178 |
+
self.scale.extend([torch.zeros(global_hidden_units, dtype=torch.float)] * layer_num) # ffn_scale2
|
179 |
+
|
180 |
+
if self.has_adapters:
|
181 |
+
self.int8_w.extend([torch.zeros(global_hidden_units, local_adapter_inter_size,
|
182 |
+
dtype=torch.int8)] * layer_num) # adaptor1_int8_kernel1
|
183 |
+
self.scale.extend([torch.zeros(local_adapter_inter_size, dtype=torch.float)]
|
184 |
+
* layer_num) # adaptor1_scale1
|
185 |
+
self.int8_w.extend([torch.zeros(local_adapter_inter_size, global_hidden_units,
|
186 |
+
dtype=torch.int8)] * layer_num) # adaptor1_int8_kernel2
|
187 |
+
self.scale.extend([torch.zeros(global_hidden_units, dtype=torch.float)] * layer_num) # adaptor1_scale2
|
188 |
+
self.int8_w.extend([torch.zeros(global_hidden_units, local_adapter_inter_size,
|
189 |
+
dtype=torch.int8)] * layer_num) # adaptor2_int8_kernel1
|
190 |
+
self.scale.extend([torch.zeros(local_adapter_inter_size, dtype=torch.float)]
|
191 |
+
* layer_num) # adaptor2_scale1
|
192 |
+
self.int8_w.extend([torch.zeros(local_adapter_inter_size, global_hidden_units,
|
193 |
+
dtype=torch.int8)] * layer_num) # adaptor2_int8_kernel2
|
194 |
+
self.scale.extend([torch.zeros(global_hidden_units, dtype=torch.float)] * layer_num) # adaptor2_scale2
|
195 |
+
|
196 |
+
def __getitem__(self, idx):
|
197 |
+
return self.w[idx]
|
198 |
+
|
199 |
+
def __setitem__(self, idx, val):
|
200 |
+
self.w[idx] = val
|
201 |
+
|
202 |
+
def __len__(self):
|
203 |
+
return len(self.w)
|
204 |
+
|
205 |
+
def _map(self, func):
|
206 |
+
assert(self.pre_embed_idx < self.post_embed_idx,
|
207 |
+
"Pre decoder embedding index should be lower than post decoder embedding index.")
|
208 |
+
for i in range(len(self.w)):
|
209 |
+
if isinstance(self.w[i], list):
|
210 |
+
for j in range(len(self.w[i])):
|
211 |
+
self.w[i][j] = func(self.w[i][j])
|
212 |
+
else:
|
213 |
+
if self.share_embed and i == self.post_embed_idx:
|
214 |
+
# If sharing the pre and post embedding, any mapping to
|
215 |
+
# the pre decoder weight will give the same output to the
|
216 |
+
# post decoder weight, so we just copy here.
|
217 |
+
self.w[self.post_embed_idx] = self.w[self.pre_embed_idx]
|
218 |
+
else:
|
219 |
+
self.w[i] = func(self.w[i])
|
220 |
+
|
221 |
+
def _map_int8(self, func):
|
222 |
+
for i in range(len(self.int8_w)):
|
223 |
+
if isinstance(self.int8_w[i], list):
|
224 |
+
for j in range(len(self.int8_w[i])):
|
225 |
+
self.int8_w[i][j] = func(self.int8_w[i][j])
|
226 |
+
|
227 |
+
else:
|
228 |
+
self.int8_w[i] = func(self.int8_w[i])
|
229 |
+
for i in range(len(self.scale)):
|
230 |
+
if isinstance(self.scale[i], list):
|
231 |
+
for j in range(len(self.scale[i])):
|
232 |
+
self.scale[i][j] = func(self.scale[i][j])
|
233 |
+
|
234 |
+
else:
|
235 |
+
self.scale[i] = func(self.scale[i])
|
236 |
+
|
237 |
+
def _map_int8_scales(self, func):
|
238 |
+
for i in range(len(self.scale)):
|
239 |
+
if isinstance(self.scale[i], list):
|
240 |
+
for j in range(len(self.scale[i])):
|
241 |
+
self.scale[i][j] = func(self.scale[i][j])
|
242 |
+
|
243 |
+
else:
|
244 |
+
self.scale[i] = func(self.scale[i])
|
245 |
+
|
246 |
+
def load(self, ckpt_path, tp_rank, pipeline_para_rank):
|
247 |
+
if not os.path.exists(ckpt_path):
|
248 |
+
raise FileNotFoundError(f"Failed to find {ckpt_path}")
|
249 |
+
w = []
|
250 |
+
|
251 |
+
type_map = {np.float32: torch.float32, np.float16: torch.float16}
|
252 |
+
# Load
|
253 |
+
|
254 |
+
def is_load(i): return i >= self.layers_per_device * \
|
255 |
+
pipeline_para_rank and i < self.layers_per_device * (pipeline_para_rank + 1)
|
256 |
+
|
257 |
+
h5f = h5py.File(ckpt_path, "r")
|
258 |
+
|
259 |
+
def load_to_torch(key, is_load: bool):
|
260 |
+
if is_load:
|
261 |
+
npdata = h5f[key]["weights"][:]
|
262 |
+
return torch.from_numpy(npdata).to(str_type_map[self.inference_data_type])
|
263 |
+
else:
|
264 |
+
return torch.empty(0).to(str_type_map[self.inference_data_type])
|
265 |
+
w.extend([load_to_torch(f"model.layers.{i}.input_layernorm.weight", is_load(i))
|
266 |
+
for i in range(self.layer_num)])
|
267 |
+
w.extend([load_to_torch(f"model.layers.{i}.input_layernorm.bias", is_load(i))
|
268 |
+
for i in range(self.layer_num)])
|
269 |
+
w.extend(
|
270 |
+
[load_to_torch(
|
271 |
+
f"model.layers.{i}.attention.query_key_value.weight.{tp_rank}", is_load(i))
|
272 |
+
for i in range(self.layer_num)])
|
273 |
+
w.extend([
|
274 |
+
load_to_torch(
|
275 |
+
f"model.layers.{i}.attention.query_key_value.bias.{tp_rank}", is_load(i))
|
276 |
+
for i in range(self.layer_num)])
|
277 |
+
w.extend([load_to_torch(f"model.layers.{i}.attention.dense.weight.{tp_rank}",
|
278 |
+
is_load(i)) for i in range(self.layer_num)])
|
279 |
+
w.extend([load_to_torch(f"model.layers.{i}.attention.dense.bias", is_load(i))
|
280 |
+
for i in range(self.layer_num)])
|
281 |
+
w.extend([load_to_torch(f"model.layers.{i}.post_attention_layernorm.weight",
|
282 |
+
is_load(i)) for i in range(self.layer_num)])
|
283 |
+
w.extend([load_to_torch(f"model.layers.{i}.post_attention_layernorm.bias",
|
284 |
+
is_load(i)) for i in range(self.layer_num)])
|
285 |
+
w.extend(
|
286 |
+
[load_to_torch(f"model.layers.{i}.mlp.dense_h_to_4h.weight.{tp_rank}", is_load(i))
|
287 |
+
for i in range(self.layer_num)])
|
288 |
+
w.extend(
|
289 |
+
[load_to_torch(f"model.layers.{i}.mlp.dense_h_to_4h.bias.{tp_rank}", is_load(i))
|
290 |
+
for i in range(self.layer_num)])
|
291 |
+
w.extend(
|
292 |
+
[load_to_torch(f"model.layers.{i}.mlp.dense_4h_to_h.weight.{tp_rank}", is_load(i))
|
293 |
+
for i in range(self.layer_num)])
|
294 |
+
w.extend([load_to_torch(f"model.layers.{i}.mlp.dense_4h_to_h.bias", is_load(i)) for i in range(self.layer_num)])
|
295 |
+
|
296 |
+
if self.has_pre_decoder_layernorm:
|
297 |
+
w.append(load_to_torch(f"model.pre_decoder_layernorm.weight", True))
|
298 |
+
w.append(load_to_torch(f"model.pre_decoder_layernorm.bias", True))
|
299 |
+
|
300 |
+
if self.has_post_decoder_layernorm:
|
301 |
+
w.append(load_to_torch(f"model.final_layernorm.weight", True))
|
302 |
+
w.append(load_to_torch(f"model.final_layernorm.bias", True))
|
303 |
+
|
304 |
+
if self.has_positional_encoding:
|
305 |
+
wpe = load_to_torch(f"model.wpe", True).reshape(-1, self.global_hidden_units)
|
306 |
+
assert self.max_seq_len <= wpe.size(0), (
|
307 |
+
f"max_seq_len ({self.max_seq_len} must not exceed "
|
308 |
+
f"the value of maximum sequence length during training ({wpe.size(0)})."
|
309 |
+
)
|
310 |
+
w.append(wpe)
|
311 |
+
w.append(load_to_torch(f"model.wte", True))
|
312 |
+
self.share_embed = True
|
313 |
+
w.append(torch.empty(0).to(str_type_map[self.inference_data_type]))
|
314 |
+
|
315 |
+
gate_list = []
|
316 |
+
for i in range(self.layer_num):
|
317 |
+
gate_list.append(load_to_torch(f"model.layers.{i}.mlp.moe.gate.wg.weight", False))
|
318 |
+
w.extend(gate_list)
|
319 |
+
|
320 |
+
if self.has_adapters:
|
321 |
+
w.extend(
|
322 |
+
[load_to_torch(
|
323 |
+
f"model.layers.{i}.after_attention_adapter.dense_h_to_4h.weight.{tp_rank}", is_load(i))
|
324 |
+
for i in range(self.layer_num)])
|
325 |
+
w.extend([
|
326 |
+
load_to_torch(
|
327 |
+
f"model.layers.{i}.after_attention_adapter.dense_h_to_4h.bias.{tp_rank}", is_load(i))
|
328 |
+
for i in range(self.layer_num)])
|
329 |
+
w.extend(
|
330 |
+
[load_to_torch(
|
331 |
+
f"model.layers.{i}.after_attention_adapter.dense_4h_to_h.weight.{tp_rank}", is_load(i))
|
332 |
+
for i in range(self.layer_num)])
|
333 |
+
w.extend(
|
334 |
+
[load_to_torch(f"model.layers.{i}.after_attention_adapter.dense_4h_to_h.bias", is_load(i))
|
335 |
+
for i in range(self.layer_num)])
|
336 |
+
w.extend(
|
337 |
+
[load_to_torch(f"model.layers.{i}.after_ffn_adapter.dense_h_to_4h.weight.{tp_rank}", is_load(i))
|
338 |
+
for i in range(self.layer_num)])
|
339 |
+
w.extend(
|
340 |
+
[load_to_torch(f"model.layers.{i}.after_ffn_adapter.dense_h_to_4h.bias.{tp_rank}", is_load(i))
|
341 |
+
for i in range(self.layer_num)])
|
342 |
+
w.extend(
|
343 |
+
[load_to_torch(f"model.layers.{i}.after_ffn_adapter.dense_4h_to_h.weight.{tp_rank}", is_load(i))
|
344 |
+
for i in range(self.layer_num)])
|
345 |
+
w.extend([load_to_torch(
|
346 |
+
f"model.layers.{i}.after_ffn_adapter.dense_4h_to_h.bias", is_load(i)) for i in range(self.layer_num)])
|
347 |
+
|
348 |
+
assert len(self.w) == len(w)
|
349 |
+
|
350 |
+
# Reshape
|
351 |
+
try:
|
352 |
+
for i in range(len(w)):
|
353 |
+
if w[i].nelement() == self.w[i].nelement():
|
354 |
+
self.w[i] = w[i].reshape(self.w[i].shape)
|
355 |
+
else:
|
356 |
+
self.w[i] = w[i]
|
357 |
+
|
358 |
+
except RuntimeError:
|
359 |
+
raise RuntimeError(
|
360 |
+
f"head_num, size_per_head, vocab_size, and max_seq_len must be the same as the ones during training "
|
361 |
+
f"(idx: {i} expected shape: {self.w[i].shape} got shape: {w[i].shape})."
|
362 |
+
)
|
363 |
+
|
364 |
+
# transpose calibrate quantize the kernel
|
365 |
+
layer_num = self.layer_num
|
366 |
+
if self.int8_mode != 0:
|
367 |
+
for i in range(layer_num):
|
368 |
+
self.int8_w[i + 0 * layer_num], self.scale[i + 0 *
|
369 |
+
layer_num] = self.weight_transpose_calibrate_quantize(self.w[2 * layer_num + i])
|
370 |
+
self.int8_w[i + 1 * layer_num], self.scale[i + 1 *
|
371 |
+
layer_num] = self.weight_transpose_calibrate_quantize(self.w[4 * layer_num + i])
|
372 |
+
self.int8_w[i + 2 * layer_num], self.scale[i + 2 *
|
373 |
+
layer_num] = self.weight_transpose_calibrate_quantize(self.w[8 * layer_num + i])
|
374 |
+
self.int8_w[i + 3 * layer_num], self.scale[i + 3 *
|
375 |
+
layer_num] = self.weight_transpose_calibrate_quantize(self.w[10 * layer_num + i])
|
376 |
+
|
377 |
+
# We clear the original weights since they are no longer needed
|
378 |
+
if self.int8_mode == 1:
|
379 |
+
self.w[2 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type])
|
380 |
+
self.w[4 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type])
|
381 |
+
self.w[8 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type])
|
382 |
+
self.w[10 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type])
|
383 |
+
|
384 |
+
if self.has_adapters:
|
385 |
+
self.int8_w[i + 4 * layer_num], self.scale[i + 4 * layer_num] = self.weight_transpose_calibrate_quantize(
|
386 |
+
self.w[12 * layer_num + i + self.adapter_offset])
|
387 |
+
self.int8_w[i + 5 * layer_num], self.scale[i + 5 * layer_num] = self.weight_transpose_calibrate_quantize(
|
388 |
+
self.w[14 * layer_num + i + self.adapter_offset])
|
389 |
+
self.int8_w[i + 6 * layer_num], self.scale[i + 6 * layer_num] = self.weight_transpose_calibrate_quantize(
|
390 |
+
self.w[16 * layer_num + i + self.adapter_offset])
|
391 |
+
self.int8_w[i + 7 * layer_num], self.scale[i + 7 * layer_num] = self.weight_transpose_calibrate_quantize(
|
392 |
+
self.w[18 * layer_num + i + self.adapter_offset])
|
393 |
+
|
394 |
+
# Similar to above:
|
395 |
+
if self.int8_mode == 1:
|
396 |
+
self.w[12 * layer_num + i + self.adapter_offset] = torch.empty(
|
397 |
+
0).to(str_type_map[self.inference_data_type])
|
398 |
+
self.w[14 * layer_num + i + self.adapter_offset] = torch.empty(
|
399 |
+
0).to(str_type_map[self.inference_data_type])
|
400 |
+
self.w[16 * layer_num + i + self.adapter_offset] = torch.empty(
|
401 |
+
0).to(str_type_map[self.inference_data_type])
|
402 |
+
self.w[18 * layer_num + i + self.adapter_offset] = torch.empty(
|
403 |
+
0).to(str_type_map[self.inference_data_type])
|
404 |
+
return True
|
405 |
+
|
406 |
+
|
407 |
+
class ChatGLM6BModel(nn.Module):
|
408 |
+
def __init__(self,
|
409 |
+
head_num, size_per_head,
|
410 |
+
vocab_size,
|
411 |
+
rotary_embedding_dim,
|
412 |
+
start_id, end_id, layer_num,
|
413 |
+
arch,
|
414 |
+
max_seq_len: int,
|
415 |
+
tensor_para_size: int,
|
416 |
+
pipeline_para_size: int,
|
417 |
+
inference_data_type: str,
|
418 |
+
inter_size: int = 0,
|
419 |
+
# glm_variant_params
|
420 |
+
layernorm_eps: float = 1e-5,
|
421 |
+
layernorm_type: typing.Literal['pre_layernorm', 'post_layernorm'] = "pre_layernorm",
|
422 |
+
activation_type: str = "Gelu",
|
423 |
+
gpt_with_moe: bool = False,
|
424 |
+
expert_num: int = 0,
|
425 |
+
moe_k: int = 0,
|
426 |
+
moe_layer_index: typing.List = [],
|
427 |
+
has_positional_encoding: bool = False,
|
428 |
+
has_pre_decoder_layernorm: bool = False,
|
429 |
+
has_post_decoder_layernorm: bool = True,
|
430 |
+
has_adapters: bool = False,
|
431 |
+
adapter_inter_size: int = 0,
|
432 |
+
use_attention_linear_bias: bool = False,
|
433 |
+
int8_mode: int = 0,
|
434 |
+
weights_data_type: typing.Union[str, np.dtype] = np.float32,
|
435 |
+
shared_contexts_ratio: float = 1.0):
|
436 |
+
super().__init__()
|
437 |
+
self.head_num = head_num
|
438 |
+
self.size_per_head = size_per_head
|
439 |
+
self.vocab_size = vocab_size
|
440 |
+
self.rotary_embedding_dim = rotary_embedding_dim
|
441 |
+
self.start_id = start_id
|
442 |
+
self.end_id = end_id
|
443 |
+
self.layer_num = layer_num
|
444 |
+
self.inter_size = inter_size if inter_size != 0 else 4 * self.head_num * self.size_per_head
|
445 |
+
self.arch = arch
|
446 |
+
# gpt_variant_params
|
447 |
+
self.layernorm_eps = layernorm_eps
|
448 |
+
self.layernorm_type = layernorm_type
|
449 |
+
self.activation_type = activation_type
|
450 |
+
self.gpt_with_moe = gpt_with_moe
|
451 |
+
self.expert_num = expert_num
|
452 |
+
self.moe_k = moe_k
|
453 |
+
self.moe_layer_index = moe_layer_index
|
454 |
+
self.has_positional_encoding = has_positional_encoding
|
455 |
+
self.has_pre_decoder_layernorm = has_pre_decoder_layernorm
|
456 |
+
self.has_post_decoder_layernorm = has_post_decoder_layernorm
|
457 |
+
self.has_adapters = has_adapters
|
458 |
+
self.adapter_inter_size = adapter_inter_size
|
459 |
+
self.use_attention_linear_bias = use_attention_linear_bias
|
460 |
+
|
461 |
+
# multi-gpu params
|
462 |
+
self.tensor_para_size = tensor_para_size
|
463 |
+
self.pipeline_para_size = pipeline_para_size
|
464 |
+
self.use_sparse_gemm = False
|
465 |
+
self.build_model = False
|
466 |
+
self.int8_mode = int8_mode
|
467 |
+
self.weights_data_type = weights_data_type
|
468 |
+
self.shared_contexts_ratio = shared_contexts_ratio
|
469 |
+
|
470 |
+
assert torch.cuda.is_available(), "CUDA is required for this model."
|
471 |
+
|
472 |
+
assert head_num % tensor_para_size == 0, "head_num must be a multiple of tensor_para_size."
|
473 |
+
assert layer_num % pipeline_para_size == 0, "layer_num must be a multiple of pipeline_para_size."
|
474 |
+
|
475 |
+
# Load the C++ model into Pytorch model.
|
476 |
+
if arch == "Ampere":
|
477 |
+
lib_path = pathlib.Path(__file__).parent / "ftlib" / "libth_transformer_sm80.so"
|
478 |
+
elif arch == "Volta":
|
479 |
+
lib_path = pathlib.Path(__file__).parent / "ftlib" / "libth_transformer_sm70.so"
|
480 |
+
torch.classes.load_library(os.path.abspath(lib_path))
|
481 |
+
|
482 |
+
# Prepare weights
|
483 |
+
self.weights = ChatGLM6BWeights(head_num, size_per_head, layer_num, vocab_size,
|
484 |
+
max_seq_len, tensor_para_size, pipeline_para_size,
|
485 |
+
weights_data_type=weights_data_type,
|
486 |
+
inference_data_type=inference_data_type,
|
487 |
+
gpt_with_moe=self.gpt_with_moe,
|
488 |
+
has_positional_encoding=self.has_positional_encoding,
|
489 |
+
has_pre_decoder_layernorm=self.has_pre_decoder_layernorm,
|
490 |
+
has_post_decoder_layernorm=self.has_post_decoder_layernorm,
|
491 |
+
has_adapters=self.has_adapters,
|
492 |
+
adapter_inter_size=self.adapter_inter_size,
|
493 |
+
int8_mode=int8_mode,
|
494 |
+
inter_size=inter_size)
|
495 |
+
|
496 |
+
# Prepare for tensor/pipeline parallel
|
497 |
+
try:
|
498 |
+
dist.init_process_group(backend='mpi')
|
499 |
+
except:
|
500 |
+
print("[INFO] WARNING: Have initialized the process group")
|
501 |
+
self.rank = dist.get_rank()
|
502 |
+
self.device_count = torch.cuda.device_count()
|
503 |
+
self.device = self.rank % self.device_count
|
504 |
+
torch.cuda.set_device(self.device)
|
505 |
+
|
506 |
+
world_size = dist.get_world_size()
|
507 |
+
assert world_size == tensor_para_size * pipeline_para_size, "tensor_para_size * pipeline_para_size must be equal to world_size."
|
508 |
+
|
509 |
+
self.tensor_para_rank = self.rank % self.tensor_para_size
|
510 |
+
self.pipeline_para_rank = self.rank // self.tensor_para_size
|
511 |
+
|
512 |
+
def load(self, ckpt_path):
|
513 |
+
is_load = self.weights.load(ckpt_path, tp_rank=self.tensor_para_rank,
|
514 |
+
pipeline_para_rank=self.pipeline_para_rank)
|
515 |
+
self.cuda()
|
516 |
+
torch.cuda.empty_cache() # clean cache for model weight preprocessing
|
517 |
+
return is_load
|
518 |
+
|
519 |
+
def sparse(self):
|
520 |
+
if not self.use_sparse_gemm:
|
521 |
+
self.use_sparse_gemm = True
|
522 |
+
|
523 |
+
def cuda(self):
|
524 |
+
self.weights._map(lambda w: w.cuda(self.device))
|
525 |
+
if self.int8_mode != 0:
|
526 |
+
self.weights._map_int8(lambda w: w.cuda(self.device))
|
527 |
+
|
528 |
+
if self.build_model:
|
529 |
+
del self.model
|
530 |
+
self.build_model = False
|
531 |
+
|
532 |
+
self.model = torch.classes.FasterTransformer.GlmOp(
|
533 |
+
self.head_num, self.size_per_head, self.inter_size,
|
534 |
+
self.layer_num,
|
535 |
+
self.expert_num,
|
536 |
+
self.moe_k,
|
537 |
+
self.moe_layer_index,
|
538 |
+
self.vocab_size,
|
539 |
+
self.rotary_embedding_dim,
|
540 |
+
self.start_id, self.end_id,
|
541 |
+
self.tensor_para_size, self.pipeline_para_size, self.int8_mode,
|
542 |
+
# GLM variant parameters
|
543 |
+
self.layernorm_eps,
|
544 |
+
self.layernorm_type,
|
545 |
+
self.activation_type,
|
546 |
+
self.has_positional_encoding,
|
547 |
+
self.has_pre_decoder_layernorm,
|
548 |
+
self.has_post_decoder_layernorm,
|
549 |
+
self.has_adapters,
|
550 |
+
self.adapter_inter_size,
|
551 |
+
self.use_attention_linear_bias,
|
552 |
+
self.weights.w,
|
553 |
+
self.weights.int8_w,
|
554 |
+
self.weights.scale,
|
555 |
+
self.shared_contexts_ratio)
|
556 |
+
self.build_model = True
|
557 |
+
|
558 |
+
def forward(self,
|
559 |
+
start_ids: torch.IntTensor,
|
560 |
+
start_lengths: torch.IntTensor,
|
561 |
+
mask_positions: torch.IntTensor,
|
562 |
+
output_len: int,
|
563 |
+
beam_width: int = 1,
|
564 |
+
top_k: typing.Optional[torch.IntTensor] = None,
|
565 |
+
top_p: typing.Optional[torch.FloatTensor] = None,
|
566 |
+
beam_search_diversity_rate: typing.Optional[torch.FloatTensor] = None,
|
567 |
+
temperature: typing.Optional[torch.FloatTensor] = None,
|
568 |
+
len_penalty: typing.Optional[torch.FloatTensor] = None,
|
569 |
+
repetition_penalty: typing.Optional[torch.FloatTensor] = None,
|
570 |
+
presence_penalty: typing.Optional[torch.FloatTensor] = None,
|
571 |
+
min_length: typing.Optional[torch.IntTensor] = None,
|
572 |
+
random_seed: typing.Optional[torch.LongTensor] = None,
|
573 |
+
bad_words_list: typing.Optional[torch.IntTensor] = None,
|
574 |
+
return_output_length: bool = False,
|
575 |
+
return_cum_log_probs: int = 0):
|
576 |
+
if not self.build_model:
|
577 |
+
# for the cases we don't load model
|
578 |
+
self.cuda()
|
579 |
+
torch.cuda.empty_cache() # clean cache for model weight preprocessing
|
580 |
+
input_len = start_ids.size(1)
|
581 |
+
assert input_len > 0, "input len must be larger than zero. For an unconditional case, use start_id as the first token."
|
582 |
+
|
583 |
+
# Inputs to device
|
584 |
+
start_ids = start_ids.cuda(self.device)
|
585 |
+
start_lengths = start_lengths.cuda(self.device)
|
586 |
+
mask_positions = mask_positions.cuda(self.device)
|
587 |
+
|
588 |
+
# outputs: output_ids, output_lengths, output_cum_log_probs (optional)
|
589 |
+
outputs = self.model.forward(start_ids,
|
590 |
+
start_lengths,
|
591 |
+
mask_positions,
|
592 |
+
output_len,
|
593 |
+
beam_width, # optional, can be None
|
594 |
+
top_k, # optional, can be None
|
595 |
+
top_p, # optional, can be None
|
596 |
+
beam_search_diversity_rate, # optional, can be None
|
597 |
+
temperature, # optional, can be None
|
598 |
+
len_penalty, # optional, can be None
|
599 |
+
repetition_penalty, # optional, can be None
|
600 |
+
presence_penalty, # optional, can be None
|
601 |
+
min_length, # optional, can be None
|
602 |
+
random_seed, # optional, can be None
|
603 |
+
bad_words_list, # optional, can be None
|
604 |
+
return_cum_log_probs) # optional, can be None
|
605 |
+
if return_cum_log_probs == 0:
|
606 |
+
output_ids, output_lengths = outputs
|
607 |
+
else:
|
608 |
+
output_ids, output_lengths, output_cum_log_probs = outputs
|
609 |
+
if return_output_length:
|
610 |
+
if return_cum_log_probs > 0:
|
611 |
+
return output_ids, output_lengths, output_cum_log_probs
|
612 |
+
else:
|
613 |
+
return output_ids, output_lengths
|
614 |
+
else:
|
615 |
+
return output_ids
|
616 |
+
|
617 |
+
def set_input_tensor(self, input_tensor):
|
618 |
+
"""Set input tensor to be used instead of forward()'s input.
|
619 |
+
|
620 |
+
When doing pipeline parallelism the input from the previous
|
621 |
+
stage comes from communication, not from the input, so the
|
622 |
+
model's forward_step_func won't have it. This function is thus
|
623 |
+
used by internal code to bypass the input provided by the
|
624 |
+
forward_step_func"""
|
625 |
+
self.input_tensor = input_tensor
|
models/config.ini
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[glm6b]
|
2 |
+
model_name = chatglm-6b
|
3 |
+
head_num = 32
|
4 |
+
size_per_head = 128
|
5 |
+
inter_size = 16384
|
6 |
+
max_pos_seq_len = 2048
|
7 |
+
num_layer = 28
|
8 |
+
vocab_size = 130528
|
9 |
+
start_id = 130004
|
10 |
+
end_id = 130005
|
11 |
+
weight_data_type = fp16
|
12 |
+
tensor_para_size = 1
|
13 |
+
layernorm_eps = 1e-5
|
models/tokenization_chatglm.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tokenization classes for ChatGLM."""
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
import os
|
4 |
+
|
5 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
6 |
+
from transformers.utils import logging, PaddingStrategy
|
7 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
8 |
+
from typing import Dict
|
9 |
+
import sentencepiece as spm
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
15 |
+
"THUDM/chatglm-6b": 2048,
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
class TextTokenizer:
|
20 |
+
def __init__(self, model_path):
|
21 |
+
self.sp = spm.SentencePieceProcessor()
|
22 |
+
self.sp.Load(model_path)
|
23 |
+
self.num_tokens = self.sp.vocab_size()
|
24 |
+
|
25 |
+
def encode(self, text):
|
26 |
+
return self.sp.EncodeAsIds(text)
|
27 |
+
|
28 |
+
def decode(self, ids: List[int]):
|
29 |
+
return self.sp.DecodeIds(ids)
|
30 |
+
|
31 |
+
def tokenize(self, text):
|
32 |
+
return self.sp.EncodeAsPieces(text)
|
33 |
+
|
34 |
+
def convert_tokens_to_string(self, tokens):
|
35 |
+
return self.sp.DecodePieces(tokens)
|
36 |
+
|
37 |
+
def convert_tokens_to_ids(self, tokens):
|
38 |
+
return [self.sp.PieceToId(token) for token in tokens]
|
39 |
+
|
40 |
+
def convert_token_to_id(self, token):
|
41 |
+
return self.sp.PieceToId(token)
|
42 |
+
|
43 |
+
def convert_id_to_token(self, idx):
|
44 |
+
return self.sp.IdToPiece(idx)
|
45 |
+
|
46 |
+
def __len__(self):
|
47 |
+
return self.num_tokens
|
48 |
+
|
49 |
+
|
50 |
+
class SPTokenizer:
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
vocab_file,
|
54 |
+
num_image_tokens=20000,
|
55 |
+
max_blank_length=80,
|
56 |
+
byte_fallback=True,
|
57 |
+
):
|
58 |
+
assert vocab_file is not None
|
59 |
+
self.vocab_file = vocab_file
|
60 |
+
self.num_image_tokens = num_image_tokens
|
61 |
+
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
|
62 |
+
self.max_blank_length = max_blank_length
|
63 |
+
self.byte_fallback = byte_fallback
|
64 |
+
self.text_tokenizer = TextTokenizer(vocab_file)
|
65 |
+
|
66 |
+
def _get_text_tokenizer(self):
|
67 |
+
return self.text_tokenizer
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def get_blank_token(length: int):
|
71 |
+
assert length >= 2
|
72 |
+
return f"<|blank_{length}|>"
|
73 |
+
|
74 |
+
@staticmethod
|
75 |
+
def get_tab_token():
|
76 |
+
return f"<|tab|>"
|
77 |
+
|
78 |
+
@property
|
79 |
+
def num_text_tokens(self):
|
80 |
+
return self.text_tokenizer.num_tokens
|
81 |
+
|
82 |
+
@property
|
83 |
+
def num_tokens(self):
|
84 |
+
return self.num_image_tokens + self.num_text_tokens
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def _encode_whitespaces(text: str, max_len: int = 80):
|
88 |
+
text = text.replace("\t", SPTokenizer.get_tab_token())
|
89 |
+
for i in range(max_len, 1, -1):
|
90 |
+
text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
|
91 |
+
return text
|
92 |
+
|
93 |
+
def _preprocess(self, text: str, linebreak=True, whitespaces=True):
|
94 |
+
if linebreak:
|
95 |
+
text = text.replace("\n", "<n>")
|
96 |
+
if whitespaces:
|
97 |
+
text = self._encode_whitespaces(text, max_len=self.max_blank_length)
|
98 |
+
return text
|
99 |
+
|
100 |
+
def encode(
|
101 |
+
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
102 |
+
) -> List[int]:
|
103 |
+
"""
|
104 |
+
@param text: Text to encode.
|
105 |
+
@param linebreak: Whether to encode newline (\n) in text.
|
106 |
+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
107 |
+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
108 |
+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
109 |
+
"""
|
110 |
+
text = self._preprocess(text, linebreak, whitespaces)
|
111 |
+
if not add_dummy_prefix:
|
112 |
+
text = "<n>" + text
|
113 |
+
tmp = self._get_text_tokenizer().encode(text)
|
114 |
+
tokens = [x + self.num_image_tokens for x in tmp]
|
115 |
+
return tokens if add_dummy_prefix else tokens[2:]
|
116 |
+
|
117 |
+
def postprocess(self, text):
|
118 |
+
text = text.replace("<n>", "\n")
|
119 |
+
text = text.replace(SPTokenizer.get_tab_token(), "\t")
|
120 |
+
for i in range(2, self.max_blank_length + 1):
|
121 |
+
text = text.replace(self.get_blank_token(i), " " * i)
|
122 |
+
return text
|
123 |
+
|
124 |
+
def decode(self, text_ids: List[int]) -> str:
|
125 |
+
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
|
126 |
+
ids = [_id for _id in ids if _id >= 0]
|
127 |
+
text = self._get_text_tokenizer().decode(ids)
|
128 |
+
text = self.postprocess(text)
|
129 |
+
return text
|
130 |
+
|
131 |
+
def decode_tokens(self, tokens: List[str]) -> str:
|
132 |
+
text = self._get_text_tokenizer().convert_tokens_to_string(tokens)
|
133 |
+
text = self.postprocess(text)
|
134 |
+
return text
|
135 |
+
|
136 |
+
def tokenize(
|
137 |
+
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
138 |
+
) -> List[str]:
|
139 |
+
"""
|
140 |
+
@param text: Text to encode.
|
141 |
+
@param linebreak: Whether to encode newline (\n) in text.
|
142 |
+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
143 |
+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
144 |
+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
145 |
+
"""
|
146 |
+
text = self._preprocess(text, linebreak, whitespaces)
|
147 |
+
if not add_dummy_prefix:
|
148 |
+
text = "<n>" + text
|
149 |
+
tokens = self._get_text_tokenizer().tokenize(text)
|
150 |
+
return tokens if add_dummy_prefix else tokens[2:]
|
151 |
+
|
152 |
+
def __getitem__(self, x: Union[int, str]):
|
153 |
+
if isinstance(x, int):
|
154 |
+
if x < self.num_image_tokens:
|
155 |
+
return "<image_{}>".format(x)
|
156 |
+
else:
|
157 |
+
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
|
158 |
+
elif isinstance(x, str):
|
159 |
+
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
|
160 |
+
return int(x[7:-1])
|
161 |
+
else:
|
162 |
+
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
|
163 |
+
else:
|
164 |
+
raise ValueError("The key should be str or int.")
|
165 |
+
|
166 |
+
|
167 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
168 |
+
"""
|
169 |
+
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
vocab_file (`str`):
|
173 |
+
Path to the vocabulary file.
|
174 |
+
"""
|
175 |
+
|
176 |
+
vocab_files_names = {"vocab_file": "ice_text.model"}
|
177 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
178 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
179 |
+
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
vocab_file,
|
183 |
+
do_lower_case=False,
|
184 |
+
remove_space=False,
|
185 |
+
bos_token='<sop>',
|
186 |
+
eos_token='<eop>',
|
187 |
+
end_token='</s>',
|
188 |
+
mask_token='[MASK]',
|
189 |
+
gmask_token='[gMASK]',
|
190 |
+
padding_side="left",
|
191 |
+
pad_token="<pad>",
|
192 |
+
unk_token="<unk>",
|
193 |
+
num_image_tokens=20000,
|
194 |
+
**kwargs
|
195 |
+
) -> None:
|
196 |
+
super().__init__(
|
197 |
+
do_lower_case=do_lower_case,
|
198 |
+
remove_space=remove_space,
|
199 |
+
padding_side=padding_side,
|
200 |
+
bos_token=bos_token,
|
201 |
+
eos_token=eos_token,
|
202 |
+
end_token=end_token,
|
203 |
+
mask_token=mask_token,
|
204 |
+
gmask_token=gmask_token,
|
205 |
+
pad_token=pad_token,
|
206 |
+
unk_token=unk_token,
|
207 |
+
num_image_tokens=num_image_tokens,
|
208 |
+
**kwargs
|
209 |
+
)
|
210 |
+
|
211 |
+
self.do_lower_case = do_lower_case
|
212 |
+
self.remove_space = remove_space
|
213 |
+
self.vocab_file = vocab_file
|
214 |
+
|
215 |
+
self.bos_token = bos_token
|
216 |
+
self.eos_token = eos_token
|
217 |
+
self.end_token = end_token
|
218 |
+
self.mask_token = mask_token
|
219 |
+
self.gmask_token = gmask_token
|
220 |
+
|
221 |
+
self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens)
|
222 |
+
|
223 |
+
""" Initialisation """
|
224 |
+
|
225 |
+
@property
|
226 |
+
def gmask_token_id(self) -> Optional[int]:
|
227 |
+
if self.gmask_token is None:
|
228 |
+
return None
|
229 |
+
return self.convert_tokens_to_ids(self.gmask_token)
|
230 |
+
|
231 |
+
@property
|
232 |
+
def end_token_id(self) -> Optional[int]:
|
233 |
+
"""
|
234 |
+
`Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been
|
235 |
+
set.
|
236 |
+
"""
|
237 |
+
if self.end_token is None:
|
238 |
+
return None
|
239 |
+
return self.convert_tokens_to_ids(self.end_token)
|
240 |
+
|
241 |
+
@property
|
242 |
+
def vocab_size(self):
|
243 |
+
""" Returns vocab size """
|
244 |
+
return self.sp_tokenizer.num_tokens
|
245 |
+
|
246 |
+
def get_vocab(self):
|
247 |
+
""" Returns vocab as a dict """
|
248 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
249 |
+
vocab.update(self.added_tokens_encoder)
|
250 |
+
return vocab
|
251 |
+
|
252 |
+
def preprocess_text(self, inputs):
|
253 |
+
if self.remove_space:
|
254 |
+
outputs = " ".join(inputs.strip().split())
|
255 |
+
else:
|
256 |
+
outputs = inputs
|
257 |
+
|
258 |
+
if self.do_lower_case:
|
259 |
+
outputs = outputs.lower()
|
260 |
+
|
261 |
+
return outputs
|
262 |
+
|
263 |
+
def _tokenize(self, text, **kwargs):
|
264 |
+
""" Returns a tokenized string. """
|
265 |
+
text = self.preprocess_text(text)
|
266 |
+
|
267 |
+
seq = self.sp_tokenizer.tokenize(text)
|
268 |
+
|
269 |
+
return seq
|
270 |
+
|
271 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
272 |
+
return self.sp_tokenizer.decode_tokens(tokens)
|
273 |
+
|
274 |
+
def _decode(
|
275 |
+
self,
|
276 |
+
token_ids: Union[int, List[int]],
|
277 |
+
**kwargs
|
278 |
+
) -> str:
|
279 |
+
if isinstance(token_ids, int):
|
280 |
+
token_ids = [token_ids]
|
281 |
+
if len(token_ids) == 0:
|
282 |
+
return ""
|
283 |
+
if self.pad_token_id in token_ids: # remove pad
|
284 |
+
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
|
285 |
+
return super()._decode(token_ids, **kwargs)
|
286 |
+
|
287 |
+
def _convert_token_to_id(self, token):
|
288 |
+
""" Converts a token (str) in an id using the vocab. """
|
289 |
+
return self.sp_tokenizer[token]
|
290 |
+
|
291 |
+
def _convert_id_to_token(self, index):
|
292 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
293 |
+
return self.sp_tokenizer[index]
|
294 |
+
|
295 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
296 |
+
"""
|
297 |
+
Save the vocabulary and special tokens file to a directory.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
save_directory (`str`):
|
301 |
+
The directory in which to save the vocabulary.
|
302 |
+
filename_prefix (`str`, *optional*):
|
303 |
+
An optional prefix to add to the named of the saved files.
|
304 |
+
|
305 |
+
Returns:
|
306 |
+
`Tuple(str)`: Paths to the files saved.
|
307 |
+
"""
|
308 |
+
if os.path.isdir(save_directory):
|
309 |
+
vocab_file = os.path.join(
|
310 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
vocab_file = save_directory
|
314 |
+
|
315 |
+
with open(self.vocab_file, 'rb') as fin:
|
316 |
+
proto_str = fin.read()
|
317 |
+
|
318 |
+
with open(vocab_file, "wb") as writer:
|
319 |
+
writer.write(proto_str)
|
320 |
+
|
321 |
+
return (vocab_file,)
|
322 |
+
|
323 |
+
def build_inputs_with_special_tokens(
|
324 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
325 |
+
) -> List[int]:
|
326 |
+
"""
|
327 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
328 |
+
adding special tokens. A BERT sequence has the following format:
|
329 |
+
|
330 |
+
- single sequence: `[CLS] X [SEP]`
|
331 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
332 |
+
|
333 |
+
Args:
|
334 |
+
token_ids_0 (`List[int]`):
|
335 |
+
List of IDs to which the special tokens will be added.
|
336 |
+
token_ids_1 (`List[int]`, *optional*):
|
337 |
+
Optional second list of IDs for sequence pairs.
|
338 |
+
|
339 |
+
Returns:
|
340 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
341 |
+
"""
|
342 |
+
gmask_id = self.sp_tokenizer[self.gmask_token]
|
343 |
+
eos_id = self.sp_tokenizer[self.eos_token]
|
344 |
+
token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]]
|
345 |
+
if token_ids_1 is not None:
|
346 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [eos_id]
|
347 |
+
return token_ids_0
|
348 |
+
|
349 |
+
def _pad(
|
350 |
+
self,
|
351 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
352 |
+
max_length: Optional[int] = None,
|
353 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
354 |
+
pad_to_multiple_of: Optional[int] = None,
|
355 |
+
return_attention_mask: Optional[bool] = None,
|
356 |
+
) -> dict:
|
357 |
+
"""
|
358 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
359 |
+
|
360 |
+
Args:
|
361 |
+
encoded_inputs:
|
362 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
363 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
364 |
+
Will truncate by taking into account the special tokens.
|
365 |
+
padding_strategy: PaddingStrategy to use for padding.
|
366 |
+
|
367 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
368 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
369 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
370 |
+
The tokenizer padding sides are defined in self.padding_side:
|
371 |
+
|
372 |
+
- 'left': pads on the left of the sequences
|
373 |
+
- 'right': pads on the right of the sequences
|
374 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
375 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
376 |
+
`>= 7.5` (Volta).
|
377 |
+
return_attention_mask:
|
378 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
379 |
+
"""
|
380 |
+
# Load from model defaults
|
381 |
+
bos_token_id = self.sp_tokenizer[self.bos_token]
|
382 |
+
mask_token_id = self.sp_tokenizer[self.mask_token]
|
383 |
+
gmask_token_id = self.sp_tokenizer[self.gmask_token]
|
384 |
+
assert self.padding_side == "left"
|
385 |
+
|
386 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
387 |
+
seq_length = len(required_input)
|
388 |
+
|
389 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
390 |
+
max_length = len(required_input)
|
391 |
+
|
392 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
393 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
394 |
+
|
395 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
396 |
+
|
397 |
+
# Initialize attention mask if not present.
|
398 |
+
if max_length is not None:
|
399 |
+
if "attention_mask" not in encoded_inputs:
|
400 |
+
if bos_token_id in required_input:
|
401 |
+
context_length = required_input.index(bos_token_id)
|
402 |
+
else:
|
403 |
+
context_length = seq_length
|
404 |
+
attention_mask = np.ones((1, seq_length, seq_length))
|
405 |
+
attention_mask = np.tril(attention_mask)
|
406 |
+
attention_mask[:, :, :context_length] = 1
|
407 |
+
attention_mask = np.bool_(attention_mask < 0.5)
|
408 |
+
encoded_inputs["attention_mask"] = attention_mask
|
409 |
+
|
410 |
+
if "position_ids" not in encoded_inputs:
|
411 |
+
if bos_token_id in required_input:
|
412 |
+
context_length = required_input.index(bos_token_id)
|
413 |
+
else:
|
414 |
+
context_length = seq_length
|
415 |
+
position_ids = np.arange(seq_length, dtype=np.int64)
|
416 |
+
mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id
|
417 |
+
if mask_token in required_input:
|
418 |
+
mask_position = required_input.index(mask_token)
|
419 |
+
position_ids[context_length:] = mask_position
|
420 |
+
block_position_ids = np.concatenate(
|
421 |
+
[np.zeros(context_length, dtype=np.int64),
|
422 |
+
np.arange(1, seq_length - context_length + 1, dtype=np.int64)])
|
423 |
+
encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0)
|
424 |
+
|
425 |
+
if needs_to_be_padded:
|
426 |
+
difference = max_length - len(required_input)
|
427 |
+
|
428 |
+
if "attention_mask" in encoded_inputs:
|
429 |
+
encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"],
|
430 |
+
pad_width=[(0, 0), (difference, 0), (difference, 0)],
|
431 |
+
mode='constant', constant_values=True)
|
432 |
+
if "token_type_ids" in encoded_inputs:
|
433 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
434 |
+
"token_type_ids"
|
435 |
+
]
|
436 |
+
if "special_tokens_mask" in encoded_inputs:
|
437 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
438 |
+
if "position_ids" in encoded_inputs:
|
439 |
+
encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"],
|
440 |
+
pad_width=[(0, 0), (difference, 0)])
|
441 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
442 |
+
|
443 |
+
return encoded_inputs
|
models/tokenizer_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name_or_path": "THUDM/chatglm-6b",
|
3 |
+
"bos_token": "<sop>",
|
4 |
+
"eos_token": "<eop>",
|
5 |
+
"end_token": "</s>",
|
6 |
+
"gmask_token": "[gMASK]",
|
7 |
+
"mask_token": "[MASK]",
|
8 |
+
"pad_token": "<pad>",
|
9 |
+
"unk_token": "<unk>",
|
10 |
+
"remove_space": false,
|
11 |
+
"do_lower_case": false,
|
12 |
+
"tokenizer_class": "ChatGLMTokenizer",
|
13 |
+
"num_image_tokens": 0,
|
14 |
+
"auto_map": {
|
15 |
+
"AutoTokenizer": [
|
16 |
+
"tokenization_chatglm.ChatGLMTokenizer",
|
17 |
+
null
|
18 |
+
]
|
19 |
+
}
|
20 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
icetk
|
2 |
+
cpm_kernels
|
3 |
+
transformers
|
4 |
+
huggingface_hub
|
5 |
+
numpy
|
6 |
+
setuptools
|
7 |
+
torch
|
8 |
+
protobuf==3.20.3
|