File size: 7,763 Bytes
ae89015 9ced76e 8881820 ae89015 e9a576f 9ced76e 8c4ab21 d1e7766 b8c960d 5507be0 9ced76e b8c960d 8881820 b8c960d 8881820 b8c960d 76d6b62 ddb8777 9ced76e 3046469 b8c960d ddb8777 b8c960d ddb8777 b8c960d ddb8777 fb79cc3 9ced76e b8c960d 8881820 9ced76e b8c960d 9ced76e 76d6b62 8881820 b8c960d 8881820 b8c960d 8881820 b8c960d 9ced76e b8c960d 0007b0f b8c960d 76d6b62 b8c960d 0007b0f 8881820 b8c960d 8881820 0007b0f b8c960d 8881820 0007b0f b8c960d 0007b0f 8881820 0007b0f 8881820 b8c960d 0007b0f 8881820 9ced76e 8881820 b8227c1 b8c960d 8881820 b8c960d 8881820 e9a576f 8881820 b8227c1 6341ebf ce7511f e9a576f 8881820 e9a576f b8c960d 394166f b8efce6 394166f 6341ebf e9a576f 83e7909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
---
license: creativeml-openrail-m
language:
- en
tags:
- art
- Stable Diffusion
---
## Model Card for lyraSD
We consider the Diffusers as the much more extendable framework for the SD ecosystem. Therefore, we have made a **pivot to Diffusers**, leading to a complete update of lyraSD.
lyraSD is currently the **fastest Stable Diffusion model** that can 100% align the outputs of **Diffusers** available, boasting an inference cost of only **0.36 seconds** for a 512x512 image, accelerating the process up to **50% faster** than the original version.
Among its main features are:
- **All Commonly used** SD1.5 and SDXL pipelines
- - Text2Img
- - Img2Img
- - Inpainting
- - ControlNetText2Img
- - ControlNetImg2Img
- - IpAdapterText2Img
- **Fast ControlNet Hot Swap**: Can hot swap a ControlNet model weights within 0.6s
- **Fast LoRA Hot Swap**: Can hot swap a Lora within 0.14s
- 100% likeness to diffusers output
- Supported Devices: Any GPU with SM version >= 80. For example, Nvidia Nvidia Ampere architecture (A2, A10, A16, A30, A40, A100), RTX 4090, 3080 and etc.
## Speed
### test environment
- Device: Nvidia A100 40G
- Nvidia driver version: 525.105.17
- Nvidia cuda version: 12.0
- Percision:fp16
- Steps: 20
- Sampler: EulerA
### SD1.5 Text2Img Performance
![Alt text](images/sd_txt2img.png)
### SD1.5 ControlNet-Text2Img Performance
![Alt text](images/sd_controlnet_txt2img.png)
### SDXL Text2Img Performance
![Alt text](images/sd_txt2img.png)
### SDXL ControlNet-Text2Img Performance
![Alt text](images/sdxl_controlnet_txt2img.png)
### SD Model Load Performance
![Alt text](images/model_load_performance.png)
## Model Sources
SD1.5
- **Checkpoint:** https://civitai.com/models/7371/rev-animated
- **ControlNet:** https://huggingface.co/lllyasviel/sd-controlnet-canny
- **Lora:** https://civitai.com/models/18323?modelVersionId=46846
SDXL
- **Checkpoint:** https://civitai.com/models/43977?modelVersionId=227916
- **ControlNet:** https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0
- **Lora:** https://civitai.com/models/18323?modelVersionId=46846
## SD1.5 Text2Img Uses
```python
import torch
import time
from lyrasd_model import LyraSdTxt2ImgPipeline
# 存放模型文件的路径,应该包含一下结构(和diffusers一致):
# 1. clip 模型
# 2. 转换好的优化后的 unet 模型,放入其中的 unet_bins 文件夹
# 3. vae 模型
# 4. scheduler 配置
# LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节
lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu11_sm80.so"
model_path = "./models/lyrasd_rev_animated"
lora_path = "./models/lyrasd_xiaorenshu_lora"
# 构建 Txt2Img 的 Pipeline
model = LyraSdTxt2ImgPipeline(model_path, lib_path)
# load lora
# lora model path, name,lora strength
model.load_lora_v2(lora_path, "xiaorenshu", 0.4)
# 准备应用的输入和超参数
prompt = "a cat, cute, cartoon, concise, traditional, chinese painting, Tang and Song Dynasties, masterpiece, 4k, 8k, UHD, best quality"
negative_prompt = "(((horrible))), (((scary))), (((naked))), (((large breasts))), high saturation, colorful, human:2, body:2, low quality, bad quality, lowres, out of frame, duplicate, watermark, signature, text, frames, cut, cropped, malformed limbs, extra limbs, (((missing arms))), (((missing legs)))"
height, width = 512, 512
steps = 30
guidance_scale = 7
generator = torch.Generator().manual_seed(123)
num_images = 1
start = time.perf_counter()
# 推理生成
images = model(prompt, height, width, steps,
guidance_scale, negative_prompt, num_images,
generator=generator)
print("image gen cost: ",time.perf_counter() - start)
# 存储生成的图片
for i, image in enumerate(images):
image.save(f"outputs/res_txt2img_lora_{i}.png")
# unload lora, lora’s name, clear lora cache
model.unload_lora_v2("xiaorenshu", True)
```
## SDXL Text2Img Uses
```python
import torch
import time
from lyrasd_model import LyraSdXLTxt2ImgPipeline
# 存放模型文件的路径,应该包含一下结构:
# 1. clip 模型
# 2. 转换好的优化后的 unet 模型,放入其中的 unet_bins 文件夹
# 3. vae 模型
# 4. scheduler 配置
# LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节
lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu11_sm80.so"
model_path = "./models/lyrasd_helloworldSDXL20Fp16"
lora_path = "./models/lyrasd_xiaorenshu_lora"
# 构建 Txt2Img 的 Pipeline
model = LyraSdXLTxt2ImgPipeline(model_path, lib_path)
# load lora
# lora model path, name,lora strength
model.load_lora_v2(lora_path, "xiaorenshu", 0.4)
# 准备应用的输入和超参数
prompt = "a cat, cute, cartoon, concise, traditional, chinese painting, Tang and Song Dynasties, masterpiece, 4k, 8k, UHD, best quality"
negative_prompt = "(((horrible))), (((scary))), (((naked))), (((large breasts))), high saturation, colorful, human:2, body:2, low quality, bad quality, lowres, out of frame, duplicate, watermark, signature, text, frames, cut, cropped, malformed limbs, extra limbs, (((missing arms))), (((missing legs)))"
height, width = 512, 512
steps = 30
guidance_scale = 7
generator = torch.Generator().manual_seed(123)
num_images = 1
start = time.perf_counter()
# 推理生成
images = model( prompt,
height=height,
width=width,
num_inference_steps=steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
generator=generator
)
print("image gen cost: ",time.perf_counter() - start)
# 存储生成的图片
for i, image in enumerate(images):
image.save(f"outputs/res_txt2img_xl_lora_{i}.png")
# unload lora,参数为 lora 的名字,是否清除 lora 缓存
model.unload_lora_v2("xiaorenshu", True)
```
## Demo output
### Text2Img
#### SD1.5 Text2Img
![text2img_demo](./outputs/res_txt2img_0.png)
#### SD1.5 Text2Img with Lora
![text2img_demo](./outputs/res_txt2img_lora_0.png)
#### SDXL Text2Img
![text2img_demo](./outputs/res_sdxl_txt2img_0.png)
#### SDXL Text2Img with Lora
![text2img_demo](./outputs/res_sdxl_txt2img_lora_0.png)
<!-- ### Img2Img
#### Img2Img input
<img src="https://chuangxin-research-1258344705.cos.ap-guangzhou.myqcloud.com/share/files/seaside_town.png?q-sign-algorithm=sha1&q-ak=AKIDBF6i7GCtKWS8ZkgOtACzX3MQDl37xYty&q-sign-time=1692601590;1865401590&q-key-time=1692601590;1865401590&q-header-list=&q-url-param-list=&q-signature=ca04ca92d990d94813029c0d9ef29537e5f4637c" alt="img2img input" width="512"/>
#### Img2Img output
![text2img_demo](./outputs/res_img2img_0.png) -->
### ControlNet Text2Img
#### Control Image
![text2img_demo](./control_bird_canny.png)
#### SD1.5 ControlNet Text2Img Output
![text2img_demo](./outputs/res_controlnet_txt2img_0.png)
#### SDXL ControlNet Text2Img Output
![text2img_demo](./outputs/res_controlnet_sdxl_txt2img.png)
## Docker Environment Recommendation
- For Cuda 11.X: we recommend ```nvcr.io/nvidia/pytorch:22.12-py3```
- For Cuda 12.0: we recommend ```nvcr.io/nvidia/pytorch:23.02-py3```
```bash
docker pull nvcr.io/nvidia/pytorch:23.02-py3
docker run --rm -it --gpus all -v ./:/lyraSD nvcr.io/nvidia/pytorch:23.02-py3
pip install -r requirements.txt
python txt2img_demo.py
```
## Citation
``` bibtex
@Misc{lyraSD_2023,
author = {Kangjian Wu, Zhengtao Wang, Yibo Lu, Haoxiong Su, Bin Wu},
title = {lyraSD: Accelerating Stable Diffusion with best flexibility},
howpublished = {\url{https://huggingface.co/TMElyralab/lyraSD}},
year = {2024}
}
```
## Report bug
- start a discussion to report any bugs!--> https://huggingface.co/TMElyralab/lyraSD/discussions
- report bug with a `[bug]` mark in the title. |