File size: 10,314 Bytes
6f0243a 69769ff 6f0243a 69769ff 6f0243a 69769ff 6f0243a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: firqaaa/indo-sentence-bert-base
metrics:
- accuracy
- precision
- recall
- f1
widget:
- text: halaman 97 - 128 tidak ada , diulang halaman 65 - 96 , pembelian hari minggu
tanggal 24 desember sore sekitar jam 4 pembayaran menggunakan kartu atm bri bersamaan
dengan buku the puppeteer dan sirkus pohon
- text: liverpool sukses di kandang tottenham
- text: hai angga , untuk penerbitan tiket reschedule diharuskan melakukan pembayaran
dulu ya .
- text: sedih kalau umat diprovokasi supaya saling membenci .
- text: berada di lokasi strategis jalan merdeka , berseberangan agak ke samping bandung
indah plaza , tapat sebelah kanan jalan sebelum traffic light , parkir mobil cukup
luas . saus bumbu dan lain-lain disediakan cukup lengkap di lantai bawah . di
lantai atas suasana agak sepi . bakso cukup enak dan terjangkau harga nya tetapi
kuah relatif kurang dan porsi tidak terlalu besar
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with firqaaa/indo-sentence-bert-base
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7676767676767676
name: Accuracy
- type: precision
value: 0.7676767676767676
name: Precision
- type: recall
value: 0.7676767676767676
name: Recall
- type: f1
value: 0.7676767676767676
name: F1
---
# SetFit with firqaaa/indo-sentence-bert-base for indonlu/smsa
## Author
**Kelompok 3 :**
- Muhammad Guntur Arfianto (20/459272/PA/19933)
- Putri Iqlima Miftahuddini (23/531392/NUGM/01467)
- Alan Kurniawan (23/531301/NUGM/01382)
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
The dataset that was used for fine-tuning this model is [indonlu](https://huggingface.co/datasets/indonlp/indonlu), specifically its subset, SmSa dataset.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | <ul><li>'hampir semua musala di stasiun jalur ke bogor kondisi nya juga terlalu sempit dan fasilitas wudhu yang kurang . bahkan sekelas stasiun besar bogor .'</li><li>'tangkap saja pak si penyanyi gadungan itu . kerjaan nya cuma fitnah di media sosial saja .'</li><li>'saya di cgv marvel city sby mau verifikasi sms redam , tapi di informasi telkomsel trobel , menyebalkan !'</li></ul> |
| 1 | <ul><li>'bapak berkumis lebat itu menyebrang menggunakan zebra cross'</li><li>'kaitan kalung cantik bahan perak / silver 925'</li><li>'duo red bull mendominasi latihan bebas pertama f1 gp singapura'</li></ul> |
| 0 | <ul><li>'jokowi sayang dan cinta kepada rakyat nya'</li><li>'nyaman banget kalau lagi nongkrong kenyang di warung upnormal . mulai dari pilihan menu nya yang serius banget digarap , dari pelayan2 nya yang kece , sampai ke interior nya yang super . rekomendasi banget deh kalau mau mengerjakan tugas , arisan , ulang tahun , reunian di sini .'</li><li>'rasanya lumayan . sambel nya juga enak . apalagi disajikan 3 macam model begitu . terus banyak pilihan sih sebenarnya mau makan apa di sini . mau gurame , mau kakap , bawal , kerang , cumi , udang . macem-macem deh . asal jangan pesan ikan kembung saja . tidak ada di sini .'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy | Precision | Recall | F1 |
|:--------|:---------|:----------|:-------|:-------|
| **all** | 0.7677 | 0.7677 | 0.7677 | 0.7677 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("TRUEnder/setfit-indosentencebert-indonlusmsa-16-shot")
# Run inference
preds = model("liverpool sukses di kandang tottenham")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 16 |
| 1 | 16 |
| 2 | 16 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (6, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results (Epoch-to-epoch)
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:------:|:-------------:|:---------------:|
| **1.0** | **96** | **0.0009** | **0.1923** |
| 2.0 | 192 | 0.0002 | 0.1977 |
| 3.0 | 288 | 0.0002 | 0.2011 |
| 4.0 | 384 | 0.0002 | 0.203 |
| 5.0 | 480 | 0.0001 | 0.2042 |
| 6.0 | 576 | 0.0001 | 0.2046 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |