--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: firqaaa/indo-sentence-bert-base metrics: - accuracy - precision - recall - f1 widget: - text: halaman 97 - 128 tidak ada , diulang halaman 65 - 96 , pembelian hari minggu tanggal 24 desember sore sekitar jam 4 pembayaran menggunakan kartu atm bri bersamaan dengan buku the puppeteer dan sirkus pohon - text: liverpool sukses di kandang tottenham - text: hai angga , untuk penerbitan tiket reschedule diharuskan melakukan pembayaran dulu ya . - text: sedih kalau umat diprovokasi supaya saling membenci . - text: berada di lokasi strategis jalan merdeka , berseberangan agak ke samping bandung indah plaza , tapat sebelah kanan jalan sebelum traffic light , parkir mobil cukup luas . saus bumbu dan lain-lain disediakan cukup lengkap di lantai bawah . di lantai atas suasana agak sepi . bakso cukup enak dan terjangkau harga nya tetapi kuah relatif kurang dan porsi tidak terlalu besar pipeline_tag: text-classification inference: true model-index: - name: SetFit with firqaaa/indo-sentence-bert-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8181818181818182 name: Accuracy - type: precision value: 0.8181818181818182 name: Precision - type: recall value: 0.8181818181818182 name: Recall - type: f1 value: 0.8181818181818182 name: F1 --- # SetFit with firqaaa/indo-sentence-bert-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 0 | | | 2 | | ## Evaluation ### Metrics | Label | Accuracy | Precision | Recall | F1 | |:--------|:---------|:----------|:-------|:-------| | **all** | 0.8182 | 0.8182 | 0.8182 | 0.8182 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("TRUEnder/setfit-indosentencebert-indonlusmsa-32-shot") # Run inference preds = model("liverpool sukses di kandang tottenham") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 23.4167 | 79 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 32 | | 1 | 32 | | 2 | 32 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (6, 16) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-------:|:-------------:|:---------------:| | **1.0** | **384** | **0.0002** | **0.1683** | | 2.0 | 768 | 0.0001 | 0.1732 | | 3.0 | 1152 | 0.0001 | 0.1739 | | 4.0 | 1536 | 0.0 | 0.174 | | 5.0 | 1920 | 0.0001 | 0.1765 | | 6.0 | 2304 | 0.0 | 0.1767 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.3.0+cu121 - Datasets: 2.19.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```