Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +264 -0
- config.json +47 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
base_model: firqaaa/indo-sentence-bert-base
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
- f1
|
14 |
+
widget:
|
15 |
+
- text: halaman 97 - 128 tidak ada , diulang halaman 65 - 96 , pembelian hari minggu
|
16 |
+
tanggal 24 desember sore sekitar jam 4 pembayaran menggunakan kartu atm bri bersamaan
|
17 |
+
dengan buku the puppeteer dan sirkus pohon
|
18 |
+
- text: liverpool sukses di kandang tottenham
|
19 |
+
- text: hai angga , untuk penerbitan tiket reschedule diharuskan melakukan pembayaran
|
20 |
+
dulu ya .
|
21 |
+
- text: sedih kalau umat diprovokasi supaya saling membenci .
|
22 |
+
- text: berada di lokasi strategis jalan merdeka , berseberangan agak ke samping bandung
|
23 |
+
indah plaza , tapat sebelah kanan jalan sebelum traffic light , parkir mobil cukup
|
24 |
+
luas . saus bumbu dan lain-lain disediakan cukup lengkap di lantai bawah . di
|
25 |
+
lantai atas suasana agak sepi . bakso cukup enak dan terjangkau harga nya tetapi
|
26 |
+
kuah relatif kurang dan porsi tidak terlalu besar
|
27 |
+
pipeline_tag: text-classification
|
28 |
+
inference: true
|
29 |
+
model-index:
|
30 |
+
- name: SetFit with firqaaa/indo-sentence-bert-base
|
31 |
+
results:
|
32 |
+
- task:
|
33 |
+
type: text-classification
|
34 |
+
name: Text Classification
|
35 |
+
dataset:
|
36 |
+
name: Unknown
|
37 |
+
type: unknown
|
38 |
+
split: test
|
39 |
+
metrics:
|
40 |
+
- type: accuracy
|
41 |
+
value: 0.7171717171717171
|
42 |
+
name: Accuracy
|
43 |
+
- type: precision
|
44 |
+
value: 0.7171717171717171
|
45 |
+
name: Precision
|
46 |
+
- type: recall
|
47 |
+
value: 0.7171717171717171
|
48 |
+
name: Recall
|
49 |
+
- type: f1
|
50 |
+
value: 0.7171717171717171
|
51 |
+
name: F1
|
52 |
+
---
|
53 |
+
|
54 |
+
# SetFit with firqaaa/indo-sentence-bert-base
|
55 |
+
|
56 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
57 |
+
|
58 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
59 |
+
|
60 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
61 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
62 |
+
|
63 |
+
## Model Details
|
64 |
+
|
65 |
+
### Model Description
|
66 |
+
- **Model Type:** SetFit
|
67 |
+
- **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
|
68 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
69 |
+
- **Maximum Sequence Length:** 512 tokens
|
70 |
+
- **Number of Classes:** 3 classes
|
71 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
72 |
+
<!-- - **Language:** Unknown -->
|
73 |
+
<!-- - **License:** Unknown -->
|
74 |
+
|
75 |
+
### Model Sources
|
76 |
+
|
77 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
78 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
79 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
80 |
+
|
81 |
+
### Model Labels
|
82 |
+
| Label | Examples |
|
83 |
+
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
84 |
+
| 2 | <ul><li>'nasi campur terkenal di bandung , info nya nasi campur pertama di bandung . mengandung b2 . rasa standar nasi campur . ada babi merah , babi panggang , sate babi manis , bakso goreng , jerohan manis . layanan tidak ramah , maklum masih generasi tua yang beraksi . lokasi makan lumayan bersih tapi tidak berat'</li><li>'saya di cgv marvel city sby mau verifikasi sms redam , tapi di informasi telkomsel trobel , menyebalkan !'</li><li>'indonesia itu tipe yang kalau sudah down pasti susah bangkit lagi'</li></ul> |
|
85 |
+
| 1 | <ul><li>'biru ada 4 , hijau ada 4 , merah ada 3 , kuning ada 3'</li><li>'baik terima kasih banyak'</li><li>'hai , ya , silakan kamu dapat mencoba lakukan pembayaran pdam di bukalapak .'</li></ul> |
|
86 |
+
| 0 | <ul><li>'nyaman banget kalau lagi nongkrong kenyang di warung upnormal . mulai dari pilihan menu nya yang serius banget digarap , dari pelayan2 nya yang kece , sampai ke interior nya yang super . rekomendasi banget deh kalau mau mengerjakan tugas , arisan , ulang tahun , reunian di sini .'</li><li>'conggo gallrely cafe di bandung utara . cafe nya sih okok saja . yang menarik adalah produksi meja dengan kayu-kayu yang panjang dan tebal khusus untuk meja makan .'</li><li>'terima kasih mas'</li></ul> |
|
87 |
+
|
88 |
+
## Evaluation
|
89 |
+
|
90 |
+
### Metrics
|
91 |
+
| Label | Accuracy | Precision | Recall | F1 |
|
92 |
+
|:--------|:---------|:----------|:-------|:-------|
|
93 |
+
| **all** | 0.7172 | 0.7172 | 0.7172 | 0.7172 |
|
94 |
+
|
95 |
+
## Uses
|
96 |
+
|
97 |
+
### Direct Use for Inference
|
98 |
+
|
99 |
+
First install the SetFit library:
|
100 |
+
|
101 |
+
```bash
|
102 |
+
pip install setfit
|
103 |
+
```
|
104 |
+
|
105 |
+
Then you can load this model and run inference.
|
106 |
+
|
107 |
+
```python
|
108 |
+
from setfit import SetFitModel
|
109 |
+
|
110 |
+
# Download from the 🤗 Hub
|
111 |
+
model = SetFitModel.from_pretrained("TRUEnder/setfit-indosentencebert-indonlusmsa-8-shot")
|
112 |
+
# Run inference
|
113 |
+
preds = model("liverpool sukses di kandang tottenham")
|
114 |
+
```
|
115 |
+
|
116 |
+
<!--
|
117 |
+
### Downstream Use
|
118 |
+
|
119 |
+
*List how someone could finetune this model on their own dataset.*
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Out-of-Scope Use
|
124 |
+
|
125 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
<!--
|
129 |
+
## Bias, Risks and Limitations
|
130 |
+
|
131 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
<!--
|
135 |
+
### Recommendations
|
136 |
+
|
137 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
## Training Details
|
141 |
+
|
142 |
+
### Training Set Metrics
|
143 |
+
| Training set | Min | Median | Max |
|
144 |
+
|:-------------|:----|:--------|:----|
|
145 |
+
| Word count | 3 | 22.7917 | 61 |
|
146 |
+
|
147 |
+
| Label | Training Sample Count |
|
148 |
+
|:------|:----------------------|
|
149 |
+
| 0 | 8 |
|
150 |
+
| 1 | 8 |
|
151 |
+
| 2 | 8 |
|
152 |
+
|
153 |
+
### Training Hyperparameters
|
154 |
+
- batch_size: (16, 2)
|
155 |
+
- num_epochs: (2, 16)
|
156 |
+
- max_steps: -1
|
157 |
+
- sampling_strategy: oversampling
|
158 |
+
- body_learning_rate: (2e-05, 1e-05)
|
159 |
+
- head_learning_rate: 0.01
|
160 |
+
- loss: CosineSimilarityLoss
|
161 |
+
- distance_metric: cosine_distance
|
162 |
+
- margin: 0.25
|
163 |
+
- end_to_end: False
|
164 |
+
- use_amp: False
|
165 |
+
- warmup_proportion: 0.1
|
166 |
+
- seed: 42
|
167 |
+
- eval_max_steps: -1
|
168 |
+
- load_best_model_at_end: True
|
169 |
+
|
170 |
+
### Training Results
|
171 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
172 |
+
|:-------:|:------:|:-------------:|:---------------:|
|
173 |
+
| 0.0417 | 1 | 0.3908 | - |
|
174 |
+
| 0.0833 | 2 | 0.2962 | - |
|
175 |
+
| 0.125 | 3 | 0.2397 | - |
|
176 |
+
| 0.1667 | 4 | 0.3493 | - |
|
177 |
+
| 0.2083 | 5 | 0.2197 | - |
|
178 |
+
| 0.25 | 6 | 0.3782 | - |
|
179 |
+
| 0.2917 | 7 | 0.2341 | - |
|
180 |
+
| 0.3333 | 8 | 0.2166 | - |
|
181 |
+
| 0.375 | 9 | 0.3381 | - |
|
182 |
+
| 0.4167 | 10 | 0.1212 | - |
|
183 |
+
| 0.4583 | 11 | 0.1849 | - |
|
184 |
+
| 0.5 | 12 | 0.1796 | - |
|
185 |
+
| 0.5417 | 13 | 0.2027 | - |
|
186 |
+
| 0.5833 | 14 | 0.1824 | - |
|
187 |
+
| 0.625 | 15 | 0.1242 | - |
|
188 |
+
| 0.6667 | 16 | 0.1071 | - |
|
189 |
+
| 0.7083 | 17 | 0.1324 | - |
|
190 |
+
| 0.75 | 18 | 0.0667 | - |
|
191 |
+
| 0.7917 | 19 | 0.1095 | - |
|
192 |
+
| 0.8333 | 20 | 0.1277 | - |
|
193 |
+
| 0.875 | 21 | 0.0506 | - |
|
194 |
+
| 0.9167 | 22 | 0.0661 | - |
|
195 |
+
| 0.9583 | 23 | 0.0776 | - |
|
196 |
+
| 1.0 | 24 | 0.0371 | 0.2406 |
|
197 |
+
| 1.0417 | 25 | 0.0652 | - |
|
198 |
+
| 1.0833 | 26 | 0.0698 | - |
|
199 |
+
| 1.125 | 27 | 0.0775 | - |
|
200 |
+
| 1.1667 | 28 | 0.052 | - |
|
201 |
+
| 1.2083 | 29 | 0.0399 | - |
|
202 |
+
| 1.25 | 30 | 0.0189 | - |
|
203 |
+
| 1.2917 | 31 | 0.0341 | - |
|
204 |
+
| 1.3333 | 32 | 0.0259 | - |
|
205 |
+
| 1.375 | 33 | 0.0844 | - |
|
206 |
+
| 1.4167 | 34 | 0.0322 | - |
|
207 |
+
| 1.4583 | 35 | 0.0186 | - |
|
208 |
+
| 1.5 | 36 | 0.0328 | - |
|
209 |
+
| 1.5417 | 37 | 0.0107 | - |
|
210 |
+
| 1.5833 | 38 | 0.027 | - |
|
211 |
+
| 1.625 | 39 | 0.0311 | - |
|
212 |
+
| 1.6667 | 40 | 0.0244 | - |
|
213 |
+
| 1.7083 | 41 | 0.0277 | - |
|
214 |
+
| 1.75 | 42 | 0.0132 | - |
|
215 |
+
| 1.7917 | 43 | 0.0153 | - |
|
216 |
+
| 1.8333 | 44 | 0.0147 | - |
|
217 |
+
| 1.875 | 45 | 0.0074 | - |
|
218 |
+
| 1.9167 | 46 | 0.0142 | - |
|
219 |
+
| 1.9583 | 47 | 0.0189 | - |
|
220 |
+
| **2.0** | **48** | **0.0095** | **0.2139** |
|
221 |
+
|
222 |
+
* The bold row denotes the saved checkpoint.
|
223 |
+
### Framework Versions
|
224 |
+
- Python: 3.10.12
|
225 |
+
- SetFit: 1.0.3
|
226 |
+
- Sentence Transformers: 3.0.1
|
227 |
+
- Transformers: 4.41.2
|
228 |
+
- PyTorch: 2.3.0+cu121
|
229 |
+
- Datasets: 2.19.2
|
230 |
+
- Tokenizers: 0.19.1
|
231 |
+
|
232 |
+
## Citation
|
233 |
+
|
234 |
+
### BibTeX
|
235 |
+
```bibtex
|
236 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
237 |
+
doi = {10.48550/ARXIV.2209.11055},
|
238 |
+
url = {https://arxiv.org/abs/2209.11055},
|
239 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
240 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
241 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
242 |
+
publisher = {arXiv},
|
243 |
+
year = {2022},
|
244 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
245 |
+
}
|
246 |
+
```
|
247 |
+
|
248 |
+
<!--
|
249 |
+
## Glossary
|
250 |
+
|
251 |
+
*Clearly define terms in order to be accessible across audiences.*
|
252 |
+
-->
|
253 |
+
|
254 |
+
<!--
|
255 |
+
## Model Card Authors
|
256 |
+
|
257 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
258 |
+
-->
|
259 |
+
|
260 |
+
<!--
|
261 |
+
## Model Card Contact
|
262 |
+
|
263 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
264 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_48",
|
3 |
+
"_num_labels": 5,
|
4 |
+
"architectures": [
|
5 |
+
"BertModel"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"directionality": "bidi",
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4"
|
19 |
+
},
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 3072,
|
22 |
+
"label2id": {
|
23 |
+
"LABEL_0": 0,
|
24 |
+
"LABEL_1": 1,
|
25 |
+
"LABEL_2": 2,
|
26 |
+
"LABEL_3": 3,
|
27 |
+
"LABEL_4": 4
|
28 |
+
},
|
29 |
+
"layer_norm_eps": 1e-12,
|
30 |
+
"max_position_embeddings": 512,
|
31 |
+
"model_type": "bert",
|
32 |
+
"num_attention_heads": 12,
|
33 |
+
"num_hidden_layers": 12,
|
34 |
+
"output_past": true,
|
35 |
+
"pad_token_id": 0,
|
36 |
+
"pooler_fc_size": 768,
|
37 |
+
"pooler_num_attention_heads": 12,
|
38 |
+
"pooler_num_fc_layers": 3,
|
39 |
+
"pooler_size_per_head": 128,
|
40 |
+
"pooler_type": "first_token_transform",
|
41 |
+
"position_embedding_type": "absolute",
|
42 |
+
"torch_dtype": "float32",
|
43 |
+
"transformers_version": "4.41.2",
|
44 |
+
"type_vocab_size": 2,
|
45 |
+
"use_cache": true,
|
46 |
+
"vocab_size": 50000
|
47 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc9fd46b19dbb7be1ebfb36f446fe0a8d6b49a79d9797972019e4e24a9923a2
|
3 |
+
size 497787752
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3404f041a045271a7e39045d4890366533666624dca03d3ae02e7437996a0948
|
3 |
+
size 19327
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|