--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-kyrgyzNER results: [] --- # xlm-roberta-base-kyrgyzNER This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3229 - Precision: 0.7042 - Recall: 0.6871 - F1: 0.6956 - Accuracy: 0.9119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 88 | 3.8135 | 0.0001 | 0.0009 | 0.0002 | 0.0002 | | No log | 2.0 | 176 | 1.3867 | 0.0 | 0.0 | 0.0 | 0.7162 | | No log | 3.0 | 264 | 0.9276 | 0.1684 | 0.0357 | 0.0590 | 0.7678 | | No log | 4.0 | 352 | 0.6467 | 0.4470 | 0.2771 | 0.3421 | 0.8420 | | No log | 5.0 | 440 | 0.5200 | 0.6394 | 0.5282 | 0.5785 | 0.8792 | | 1.647 | 6.0 | 528 | 0.4383 | 0.6712 | 0.5918 | 0.6290 | 0.8927 | | 1.647 | 7.0 | 616 | 0.3847 | 0.6724 | 0.6439 | 0.6578 | 0.9028 | | 1.647 | 8.0 | 704 | 0.3586 | 0.6857 | 0.6575 | 0.6713 | 0.9061 | | 1.647 | 9.0 | 792 | 0.3422 | 0.6786 | 0.6717 | 0.6751 | 0.9070 | | 1.647 | 10.0 | 880 | 0.3229 | 0.7042 | 0.6871 | 0.6956 | 0.9119 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2