File size: 6,396 Bytes
c2dba9f 1a14ea6 ec7d23d c2dba9f ec7d23d c2dba9f ec7d23d f35eaf9 ec7d23d c2dba9f e5fdf63 c2dba9f af64bc3 c2dba9f ee97500 dbe74d6 c2dba9f 2258b5a 4586d86 2258b5a c2dba9f e226ee2 bc629e5 e226ee2 c2dba9f 61b93b4 c2dba9f 4586d86 c2dba9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
---
language:
- multilingual
- ab
- af
- am
- ar
- as
- az
- ba
- be
- bg
- bi
- bo
- br
- bs
- ca
- ceb
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fo
- fr
- gl
- gn
- gu
- gv
- ha
- haw
- hi
- hr
- ht
- hu
- hy
- ia
- id
- is
- it
- he
- ja
- jv
- ka
- kk
- km
- kn
- ko
- la
- lm
- ln
- lo
- lt
- lv
- mg
- mi
- mk
- ml
- mn
- mr
- ms
- mt
- my
- ne
- nl
- nn
- no
- oc
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sco
- sd
- si
- sk
- sl
- sn
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- tg
- th
- tk
- tl
- tr
- tt
- uk
- ud
- uz
- vi
- war
- yi
- yo
- zh
thumbnail:
tags:
- audio-classification
- speechbrain
- embeddings
- Language
- Identification
- pytorch
- ECAPA-TDNN
- TDNN
- VoxLingua107
license: "apache-2.0"
datasets:
- VoxLingua107
metrics:
- Accuracy
widget:
- example_title: English Sample
src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0000.flac
---
# VoxLingua107 ECAPA-TDNN Spoken Language Identification Model
## Model description
This is a spoken language recognition model trained on the VoxLingua107 dataset using SpeechBrain.
The model uses the ECAPA-TDNN architecture that has previously been used for speaker recognition.
The model can classify a speech utterance according to the language spoken.
It covers 107 different languages (
Abkhazian,
Afrikaans,
Amharic,
Arabic,
Assamese,
Azerbaijani,
Bashkir,
Belarusian,
Bulgarian,
Bengali,
Tibetan,
Breton,
Bosnian,
Catalan,
Cebuano,
Czech,
Welsh,
Danish,
German,
Greek,
English,
Esperanto,
Spanish,
Estonian,
Basque,
Persian,
Finnish,
Faroese,
French,
Galician,
Guarani,
Gujarati,
Manx,
Hausa,
Hawaiian,
Hindi,
Croatian,
Haitian,
Hungarian,
Armenian,
Interlingua,
Indonesian,
Icelandic,
Italian,
Hebrew,
Japanese,
Javanese,
Georgian,
Kazakh,
Central Khmer,
Kannada,
Korean,
Latin,
Luxembourgish,
Lingala,
Lao,
Lithuanian,
Latvian,
Malagasy,
Maori,
Macedonian,
Malayalam,
Mongolian,
Marathi,
Malay,
Maltese,
Burmese,
Nepali,
Dutch,
Norwegian Nynorsk,
Norwegian,
Occitan,
Panjabi,
Polish,
Pushto,
Portuguese,
Romanian,
Russian,
Sanskrit,
Scots,
Sindhi,
Sinhala,
Slovak,
Slovenian,
Shona,
Somali,
Albanian,
Serbian,
Sundanese,
Swedish,
Swahili,
Tamil,
Telugu,
Tajik,
Thai,
Turkmen,
Tagalog,
Turkish,
Tatar,
Ukrainian,
Urdu,
Uzbek,
Vietnamese,
Waray,
Yiddish,
Yoruba,
Mandarin Chinese).
## Intended uses & limitations
The model has two uses:
- use 'as is' for spoken language recognition
- use as an utterance-level feature (embedding) extractor, for creating a dedicated language ID model on your own data
The model is trained on automatically collected YouTube data. For more
information about the dataset, see [here](http://bark.phon.ioc.ee/voxlingua107/).
#### How to use
```python
import torchaudio
from speechbrain.pretrained import EncoderClassifier
language_id = EncoderClassifier.from_hparams(source="TalTechNLP/voxlingua107-epaca-tdnn", savedir="tmp")
# Download Thai language sample from Omniglot and cvert to suitable form
signal = language_id.load_audio("https://omniglot.com/soundfiles/udhr/udhr_th.mp3")
prediction = language_id.classify_batch(signal)
print(prediction)
(tensor([[0.3210, 0.3751, 0.3680, 0.3939, 0.4026, 0.3644, 0.3689, 0.3597, 0.3508,
0.3666, 0.3895, 0.3978, 0.3848, 0.3957, 0.3949, 0.3586, 0.4360, 0.3997,
0.4106, 0.3886, 0.4177, 0.3870, 0.3764, 0.3763, 0.3672, 0.4000, 0.4256,
0.4091, 0.3563, 0.3695, 0.3320, 0.3838, 0.3850, 0.3867, 0.3878, 0.3944,
0.3924, 0.4063, 0.3803, 0.3830, 0.2996, 0.4187, 0.3976, 0.3651, 0.3950,
0.3744, 0.4295, 0.3807, 0.3613, 0.4710, 0.3530, 0.4156, 0.3651, 0.3777,
0.3813, 0.6063, 0.3708, 0.3886, 0.3766, 0.4023, 0.3785, 0.3612, 0.4193,
0.3720, 0.4406, 0.3243, 0.3866, 0.3866, 0.4104, 0.4294, 0.4175, 0.3364,
0.3595, 0.3443, 0.3565, 0.3776, 0.3985, 0.3778, 0.2382, 0.4115, 0.4017,
0.4070, 0.3266, 0.3648, 0.3888, 0.3907, 0.3755, 0.3631, 0.4460, 0.3464,
0.3898, 0.3661, 0.3883, 0.3772, 0.9289, 0.3687, 0.4298, 0.4211, 0.3838,
0.3521, 0.3515, 0.3465, 0.4772, 0.4043, 0.3844, 0.3973, 0.4343]]), tensor([0.9289]), tensor([94]), ['th'])
# The scores in the prediction[0] tensor can be interpreted as cosine scores between
# the languages and the given utterance (i.e., the larger the better)
# The identified language ISO code is given in prediction[3]
print(prediction[3])
['th']
# Alternatively, use the utterance embedding extractor:
emb = language_id.encode_batch(signal)
print(emb.shape)
torch.Size([1, 1, 256])
```
#### Limitations and bias
Since the model is trained on VoxLingua107, it has many limitations and biases, some of which are:
- Probably it's accuracy on smaller languages is quite limited
- Probably it works worse on female speech than male speech (because YouTube data includes much more male speech)
- Based on subjective experiments, it doesn't work well on speech with a foreign accent
- Probably it doesn't work well on children's speech and on persons with speech disorders
## Training data
The model is trained on [VoxLingua107](http://bark.phon.ioc.ee/voxlingua107/).
VoxLingua107 is a speech dataset for training spoken language identification models.
The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives.
VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours.
The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language.
## Training procedure
We used [SpeechBrain](https://github.com/speechbrain/speechbrain) to train the model.
Training recipe will be published soon.
## Evaluation results
Error rate: 7% on the development dataset
### BibTeX entry and citation info
```bibtex
@inproceedings{valk2021slt,
title={{VoxLingua107}: a Dataset for Spoken Language Recognition},
author={J{\"o}rgen Valk and Tanel Alum{\"a}e},
booktitle={Proc. IEEE SLT Workshop},
year={2021},
}
```
|