--- base_model: TannerGladson/chess-roberta tags: - generated_from_trainer datasets: - TannerGladson/chess-roberta-whole-move-tuning metrics: - accuracy model-index: - name: 2024.07.20-19.49 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: TannerGladson/chess-roberta-whole-move-tuning type: TannerGladson/chess-roberta-whole-move-tuning metrics: - name: Accuracy type: accuracy value: 0.902359997194343 --- [Visualize in Weights & Biases](https://wandb.ai/tanner-gladson/huggingface/runs/j4uydn09) # 2024.07.20-19.49 This model is a fine-tuned version of [TannerGladson/chess-roberta](https://huggingface.co/TannerGladson/chess-roberta) on the TannerGladson/chess-roberta-whole-move-tuning dataset. It achieves the following results on the evaluation set: - Loss: 0.2611 - Accuracy: 0.9024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5262 | 0.2485 | 1000 | 0.4272 | 0.8519 | | 0.413 | 0.4970 | 2000 | 0.3650 | 0.8711 | | 0.3505 | 0.7455 | 3000 | 0.3138 | 0.8852 | | 0.3111 | 0.9939 | 4000 | 0.2829 | 0.8950 | | 0.2817 | 1.2424 | 5000 | 0.2596 | 0.9025 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.0.1+cu117 - Datasets 2.17.1 - Tokenizers 0.19.1