Upload attention.py with huggingface_hub
Browse files- attention.py +276 -0
attention.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Attention layers."""
|
2 |
+
import math
|
3 |
+
import warnings
|
4 |
+
from typing import Optional
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from einops import rearrange
|
8 |
+
from torch import nn
|
9 |
+
from .norm import LPLayerNorm
|
10 |
+
|
11 |
+
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
|
12 |
+
if original_is_causal and num_query_tokens != num_key_tokens:
|
13 |
+
if num_query_tokens != 1:
|
14 |
+
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
|
15 |
+
else:
|
16 |
+
return False
|
17 |
+
return original_is_causal
|
18 |
+
|
19 |
+
def scaled_multihead_dot_product_attention(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
20 |
+
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
21 |
+
k = rearrange(key, 'b s (h d) -> b h d s', h=1 if multiquery else n_heads)
|
22 |
+
v = rearrange(value, 'b s (h d) -> b h s d', h=1 if multiquery else n_heads)
|
23 |
+
min_val = torch.finfo(q.dtype).min
|
24 |
+
(b, _, s_q, d) = q.shape
|
25 |
+
s_k = k.size(-1)
|
26 |
+
if softmax_scale is None:
|
27 |
+
softmax_scale = 1 / math.sqrt(d)
|
28 |
+
attn_weight = q.matmul(k) * softmax_scale
|
29 |
+
if attn_bias is not None:
|
30 |
+
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
|
31 |
+
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
|
32 |
+
attn_weight = attn_weight + attn_bias
|
33 |
+
if key_padding_mask is not None:
|
34 |
+
if attn_bias is not None:
|
35 |
+
warnings.warn('Propogating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
36 |
+
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
37 |
+
if is_causal:
|
38 |
+
s = max(s_q, s_k)
|
39 |
+
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
|
40 |
+
causal_mask = causal_mask.tril()
|
41 |
+
causal_mask = causal_mask.to(torch.bool)
|
42 |
+
causal_mask = ~causal_mask
|
43 |
+
causal_mask = causal_mask[-s_q:, -s_k:]
|
44 |
+
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
|
45 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
46 |
+
if dropout_p:
|
47 |
+
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
|
48 |
+
out = attn_weight.matmul(v)
|
49 |
+
out = rearrange(out, 'b h s d -> b s (h d)')
|
50 |
+
if needs_weights:
|
51 |
+
return (out, attn_weight)
|
52 |
+
return (out, None)
|
53 |
+
|
54 |
+
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
55 |
+
for tensor in tensors:
|
56 |
+
if tensor.dtype not in valid_dtypes:
|
57 |
+
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
|
58 |
+
if not tensor.is_cuda:
|
59 |
+
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
60 |
+
|
61 |
+
def flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
62 |
+
try:
|
63 |
+
from flash_attn import bert_padding, flash_attn_interface
|
64 |
+
except:
|
65 |
+
raise RuntimeError('Please install flash-attn==1.0.3.post0')
|
66 |
+
check_valid_inputs(query, key, value)
|
67 |
+
if attn_bias is not None:
|
68 |
+
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
69 |
+
(batch_size, seqlen) = query.shape[:2]
|
70 |
+
if key_padding_mask is None:
|
71 |
+
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
|
72 |
+
query_padding_mask = key_padding_mask[:, -query.size(1):]
|
73 |
+
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
|
74 |
+
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
75 |
+
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
|
76 |
+
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
|
77 |
+
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
|
78 |
+
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
|
79 |
+
if multiquery:
|
80 |
+
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
|
81 |
+
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
|
82 |
+
dropout_p = dropout_p if training else 0.0
|
83 |
+
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
84 |
+
output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
85 |
+
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
86 |
+
return (output, None)
|
87 |
+
|
88 |
+
def triton_flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
89 |
+
try:
|
90 |
+
from flash_attn import flash_attn_triton
|
91 |
+
except:
|
92 |
+
raise RuntimeError('Please install flash-attn==1.0.3.post0 and triton==2.0.0.dev20221202')
|
93 |
+
check_valid_inputs(query, key, value)
|
94 |
+
if dropout_p:
|
95 |
+
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
96 |
+
if needs_weights:
|
97 |
+
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
|
98 |
+
if key_padding_mask is not None:
|
99 |
+
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
100 |
+
(b_size, s_k) = key_padding_mask.shape[:2]
|
101 |
+
if attn_bias is None:
|
102 |
+
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
103 |
+
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
|
104 |
+
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
105 |
+
key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
106 |
+
value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
107 |
+
if multiquery:
|
108 |
+
key = key.expand(*key.shape[:2], n_heads, key.size(-1))
|
109 |
+
value = value.expand(*value.shape[:2], n_heads, value.size(-1))
|
110 |
+
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
111 |
+
attn_output = flash_attn_triton.flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
112 |
+
output = attn_output.view(*attn_output.shape[:2], -1)
|
113 |
+
return (output, None)
|
114 |
+
|
115 |
+
class MultiheadAttention(nn.Module):
|
116 |
+
"""Multi-head self attention.
|
117 |
+
|
118 |
+
Using torch or triton attention implemetation enables user to also use
|
119 |
+
additive bias.
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
|
123 |
+
super().__init__()
|
124 |
+
self.attn_impl = attn_impl
|
125 |
+
self.clip_qkv = clip_qkv
|
126 |
+
self.qk_ln = qk_ln
|
127 |
+
self.d_model = d_model
|
128 |
+
self.n_heads = n_heads
|
129 |
+
self.softmax_scale = softmax_scale
|
130 |
+
if self.softmax_scale is None:
|
131 |
+
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
132 |
+
self.attn_dropout_p = attn_pdrop
|
133 |
+
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
|
134 |
+
fuse_splits = (d_model, 2 * d_model)
|
135 |
+
self.Wqkv._fused = (0, fuse_splits)
|
136 |
+
if self.qk_ln:
|
137 |
+
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
138 |
+
self.q_ln = layernorm_class(self.d_model, device=device)
|
139 |
+
self.k_ln = layernorm_class(self.d_model, device=device)
|
140 |
+
if self.attn_impl == 'flash':
|
141 |
+
self.attn_fn = flash_attn_fn
|
142 |
+
elif self.attn_impl == 'triton':
|
143 |
+
self.attn_fn = triton_flash_attn_fn
|
144 |
+
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
145 |
+
elif self.attn_impl == 'torch':
|
146 |
+
self.attn_fn = scaled_multihead_dot_product_attention
|
147 |
+
if torch.cuda.is_available():
|
148 |
+
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
149 |
+
else:
|
150 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
151 |
+
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
152 |
+
self.out_proj._is_residual = True
|
153 |
+
|
154 |
+
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
|
155 |
+
qkv = self.Wqkv(x)
|
156 |
+
if self.clip_qkv:
|
157 |
+
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
158 |
+
(query, key, value) = qkv.chunk(3, dim=2)
|
159 |
+
key_padding_mask = attention_mask
|
160 |
+
if self.qk_ln:
|
161 |
+
dtype = query.dtype
|
162 |
+
query = self.q_ln(query).to(dtype)
|
163 |
+
key = self.k_ln(key).to(dtype)
|
164 |
+
if past_key_value is not None:
|
165 |
+
if len(past_key_value) != 0:
|
166 |
+
key = torch.cat([past_key_value[0], key], dim=1)
|
167 |
+
value = torch.cat([past_key_value[1], value], dim=1)
|
168 |
+
past_key_value = (key, value)
|
169 |
+
if attn_bias is not None:
|
170 |
+
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
171 |
+
(context, attn_weights) = self.attn_fn(query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
|
172 |
+
return (self.out_proj(context), attn_weights, past_key_value)
|
173 |
+
|
174 |
+
class MultiQueryAttention(nn.Module):
|
175 |
+
"""Multi-Query self attention.
|
176 |
+
|
177 |
+
Using torch or triton attention implemetation enables user to also use
|
178 |
+
additive bias.
|
179 |
+
"""
|
180 |
+
|
181 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
|
182 |
+
super().__init__()
|
183 |
+
self.attn_impl = attn_impl
|
184 |
+
self.clip_qkv = clip_qkv
|
185 |
+
self.qk_ln = qk_ln
|
186 |
+
self.d_model = d_model
|
187 |
+
self.n_heads = n_heads
|
188 |
+
self.head_dim = d_model // n_heads
|
189 |
+
self.softmax_scale = softmax_scale
|
190 |
+
if self.softmax_scale is None:
|
191 |
+
self.softmax_scale = 1 / math.sqrt(self.head_dim)
|
192 |
+
self.attn_dropout_p = attn_pdrop
|
193 |
+
self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
|
194 |
+
fuse_splits = (d_model, d_model + self.head_dim)
|
195 |
+
self.Wqkv._fused = (0, fuse_splits)
|
196 |
+
if self.qk_ln:
|
197 |
+
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
198 |
+
self.q_ln = layernorm_class(d_model, device=device)
|
199 |
+
self.k_ln = layernorm_class(self.head_dim, device=device)
|
200 |
+
if self.attn_impl == 'flash':
|
201 |
+
self.attn_fn = flash_attn_fn
|
202 |
+
elif self.attn_impl == 'triton':
|
203 |
+
self.attn_fn = triton_flash_attn_fn
|
204 |
+
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
205 |
+
elif self.attn_impl == 'torch':
|
206 |
+
self.attn_fn = scaled_multihead_dot_product_attention
|
207 |
+
if torch.cuda.is_available():
|
208 |
+
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
209 |
+
else:
|
210 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
211 |
+
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
212 |
+
self.out_proj._is_residual = True
|
213 |
+
|
214 |
+
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
|
215 |
+
qkv = self.Wqkv(x)
|
216 |
+
if self.clip_qkv:
|
217 |
+
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
218 |
+
(query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2)
|
219 |
+
key_padding_mask = attention_mask
|
220 |
+
if self.qk_ln:
|
221 |
+
dtype = query.dtype
|
222 |
+
query = self.q_ln(query).to(dtype)
|
223 |
+
key = self.k_ln(key).to(dtype)
|
224 |
+
if past_key_value is not None:
|
225 |
+
if len(past_key_value) != 0:
|
226 |
+
key = torch.cat([past_key_value[0], key], dim=1)
|
227 |
+
value = torch.cat([past_key_value[1], value], dim=1)
|
228 |
+
past_key_value = (key, value)
|
229 |
+
if attn_bias is not None:
|
230 |
+
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
231 |
+
(context, attn_weights) = self.attn_fn(query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True)
|
232 |
+
return (self.out_proj(context), attn_weights, past_key_value)
|
233 |
+
|
234 |
+
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|
235 |
+
if attn_impl == 'flash':
|
236 |
+
return None
|
237 |
+
elif attn_impl in ['torch', 'triton']:
|
238 |
+
if alibi:
|
239 |
+
if (prefix_lm or not causal) or use_sequence_id:
|
240 |
+
return (1, n_heads, seq_len, seq_len)
|
241 |
+
return (1, n_heads, 1, seq_len)
|
242 |
+
elif prefix_lm or use_sequence_id:
|
243 |
+
return (1, 1, seq_len, seq_len)
|
244 |
+
return None
|
245 |
+
else:
|
246 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
247 |
+
|
248 |
+
def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
|
249 |
+
if attn_impl == 'flash':
|
250 |
+
return None
|
251 |
+
elif attn_impl in ['torch', 'triton']:
|
252 |
+
if alibi:
|
253 |
+
(device, dtype) = (attn_bias.device, attn_bias.dtype)
|
254 |
+
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
|
255 |
+
return attn_bias
|
256 |
+
else:
|
257 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
258 |
+
|
259 |
+
def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
260 |
+
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
261 |
+
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
262 |
+
m = m.mul(alibi_bias_max / _n_heads)
|
263 |
+
slopes = 1.0 / torch.pow(2, m)
|
264 |
+
if _n_heads != n_heads:
|
265 |
+
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
266 |
+
return slopes.view(1, n_heads, 1, 1)
|
267 |
+
|
268 |
+
def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
|
269 |
+
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
|
270 |
+
if full:
|
271 |
+
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
|
272 |
+
alibi_bias = alibi_bias.abs().mul(-1)
|
273 |
+
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
274 |
+
alibi_bias = alibi_bias * slopes
|
275 |
+
return alibi_bias.to(dtype=dtype)
|
276 |
+
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
|