File size: 2,796 Bytes
dfe94d0
 
 
 
 
 
3cfda5c
 
 
 
 
dfe94d0
 
 
 
 
3cfda5c
dfe94d0
 
3cfda5c
dfe94d0
3cfda5c
dfe94d0
 
 
d0511a7
dfe94d0
 
 
 
1a457ad
 
dfe94d0
 
 
 
dc8331a
 
 
 
 
 
 
 
dfe94d0
8c3e7f6
dfe94d0
dc8331a
dfe94d0
 
 
6878932
dc8331a
 
 
 
 
 
 
 
 
6878932
 
 
dfe94d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: PyLaia
license: mit
tags:
- PyLaia
- PyTorch
- atr
- htr
- ocr
- historical
- handwritten
metrics:
- CER
- WER
language:
- 'no'
pipeline_tag: image-to-text
---

# PyLaia - NorHand v1 (post-processed)

This model performs Handwritten Text Recognition in Norwegian. It was developed during the [HUGIN-MUNIN project](https://hugin-munin-project.github.io/).

## Model description

The model has been trained using the PyLaia library on the [NorHand v1](https://zenodo.org/record/6542056) dataset. 
Line bounding boxes were improved using a post-processing step.

Training images were resized with a fixed height of 128 pixels, keeping the original aspect ratio.

An external 6-gram character language model can be used to improve recognition. The language model is trained on [this text corpus](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-73/) published by the National Library of Norway.

## Evaluation results

The model achieves the following results:

| set   | Language model | CER (%) | WER (%) |
|:----- |:-------------- | -------:| -------:|
| train | no             |    2.33 |    5.62 |
| train | yes            |    2.62 |    6.13 |
| val   | no             |    8.20 |   24.75 |
| val   | yes            |    7.01 |   19.75 |
| test  | no             |    7.81 |   23.30 |
| test  | yes            |    6.75 |   18.22 | 

## How to use?

Please refer to the [PyLaia documentation](https://atr.pages.teklia.com/pylaia/usage/prediction/) to use this model.

# Cite us!

```bibtex
@inproceedings{pylaia2024,
    author = {Tarride, Solène and Schneider, Yoann and Generali-Lince, Marie and Boillet, Mélodie and Abadie, Bastien and Kermorvant, Christopher},
    title = {{Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library}},
    booktitle = {Document Analysis and Recognition - ICDAR 2024},
    year = {2024},
    publisher = {Springer Nature Switzerland},
    address = {Cham},
    pages = {387--404},
    isbn = {978-3-031-70549-6}
}
```

```bibtex
@inproceedings{10.1007/978-3-031-06555-2_27,
author = {Maarand, Martin and Beyer, Yngvil and K\r{a}sen, Andre and Fosseide, Knut T. and Kermorvant, Christopher},
title = {A Comprehensive Comparison of Open-Source Libraries for Handwritten Text Recognition in Norwegian},
year = {2022},
isbn = {978-3-031-06554-5},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg},
url = {https://doi.org/10.1007/978-3-031-06555-2_27},
doi = {10.1007/978-3-031-06555-2_27},
booktitle = {Document Analysis Systems: 15th IAPR International Workshop, DAS 2022, La Rochelle, France, May 22–25, 2022, Proceedings},
pages = {399–413},
numpages = {15},
keywords = {Norwegian language, Open-source, Handwriting recognition},
location = {La Rochelle, France}
}
```