|
from typing import Optional
|
|
from collections import deque
|
|
from queue import Queue
|
|
import copy
|
|
|
|
|
|
class History:
|
|
|
|
def __init__(self, tokenizer, history):
|
|
'''
|
|
init from a list of dict
|
|
'''
|
|
|
|
self.input_history = deque()
|
|
self.tokenizer = tokenizer
|
|
if history:
|
|
self._transfer_from_list(history)
|
|
|
|
def _transfer_from_list(self, history):
|
|
for message in history:
|
|
content = message.get("content")
|
|
|
|
message.update(self.tokenizer(content))
|
|
self.input_history.append(message)
|
|
|
|
def append(self, message):
|
|
content = message.get("content")
|
|
if "input_ids" not in message or "attention_mask" not in message:
|
|
message.update(self.tokenizer(content))
|
|
self.input_history.append(message)
|
|
|
|
def append_left(self, message):
|
|
content = message.get("content")
|
|
if "input_ids" not in message or "attention_mask" not in message:
|
|
message.update(self.tokenizer(content))
|
|
self.input_history.appendleft(message)
|
|
|
|
def pop(self):
|
|
x = self.input_history.pop()
|
|
return x
|
|
|
|
def pop_left(self):
|
|
x = self.input_history.pop_left()
|
|
return x
|
|
|
|
def update(self, message):
|
|
self.input_history.pop()
|
|
self.append(message)
|
|
|
|
def __len__(self):
|
|
return self.input_history.__len__()
|
|
|
|
def __str__(self):
|
|
return self.input_history.__str__()
|
|
|
|
def __copy__(self):
|
|
new_instance = type(self)(self.tokenizer, [])
|
|
new_instance.input_history = copy.copy(self.input_history)
|
|
return new_instance
|
|
|
|
def __deepcopy__(self, memodict={}):
|
|
new_instance = type(self)(self.tokenizer, [])
|
|
new_instance.input_history = copy.deepcopy(self.input_history)
|
|
return new_instance
|
|
|
|
|
|
class TelechatIterTextStreamer:
|
|
"""
|
|
With reference to the TextIterStreamers in transformers, we have rewritten this class
|
|
"""
|
|
|
|
def __init__(
|
|
self, tokenizer, history: History = None, skip_prompt: bool = False, timeout: Optional[float] = None,
|
|
**decode_kwargs
|
|
):
|
|
|
|
self.tokenizer = tokenizer
|
|
self.history = history
|
|
self.skip_prompt = skip_prompt
|
|
self.timeout = timeout
|
|
self.decode_kwargs = decode_kwargs
|
|
|
|
self.text_queue = Queue()
|
|
self.cache_time = 0
|
|
self.text_until = ""
|
|
self.token_until = []
|
|
self.stop_signal = None
|
|
self.next_tokens_are_prompt = True
|
|
|
|
self.history.append({"role": "bot", "content": self.text_until})
|
|
|
|
def put(self, value):
|
|
"""
|
|
put printable text into queue
|
|
"""
|
|
if len(value.shape) > 1 and value.shape[0] > 1:
|
|
raise ValueError("TextStreamer only supports batch size 1")
|
|
elif len(value.shape) > 1:
|
|
value = value[0]
|
|
|
|
if self.skip_prompt and self.next_tokens_are_prompt:
|
|
self.next_tokens_are_prompt = False
|
|
return
|
|
|
|
if value[-1] == self.tokenizer.eos_token_id:
|
|
return
|
|
|
|
|
|
self.token_until.extend(value.tolist())
|
|
text = self.tokenizer.decode(self.token_until, **self.decode_kwargs)
|
|
|
|
|
|
if self._is_printable(text) or self.cache_time >= 6:
|
|
output_text = text[len(self.text_until):]
|
|
self.text_until = text
|
|
|
|
else:
|
|
self.cache_time+=1
|
|
return
|
|
|
|
self.on_finalized_text(output_text)
|
|
|
|
def end(self):
|
|
"""Flushes any remaining cache and prints a newline to stdout."""
|
|
|
|
text = self.tokenizer.decode(self.token_until, **self.decode_kwargs)
|
|
output_text = text[len(self.text_until):]
|
|
self.text_until = text
|
|
self.on_finalized_text(output_text, stream_end=True)
|
|
self.clear_cache()
|
|
|
|
def clear_cache(self):
|
|
self.cache_time = 0
|
|
self.token_until = []
|
|
self.text_until = ""
|
|
self.history = None
|
|
self.next_tokens_are_prompt = True
|
|
|
|
def on_finalized_text(self, text: str, stream_end: bool = False):
|
|
"""Put the text tuple in the queue."""
|
|
self.history.update({"role": "bot", "content": self.text_until, "input_ids": self.token_until,
|
|
"attention_mask": [1] * len(self.token_until)})
|
|
self.text_queue.put((text, self.history), timeout=self.timeout)
|
|
if stream_end:
|
|
self.text_queue.put((self.stop_signal, self.history), timeout=self.timeout)
|
|
|
|
@staticmethod
|
|
def _is_printable(cp):
|
|
"""Checks whether tokens can be decoded or not"""
|
|
if "�" in cp:
|
|
return False
|
|
return True
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
value_now, history_until = self.text_queue.get(timeout=self.timeout)
|
|
if value_now == self.stop_signal:
|
|
raise StopIteration()
|
|
else:
|
|
return value_now, history_until |