HunyuanDiT
Diffusers
Safetensors
English
Chinese
Zhiminli commited on
Commit
1261caf
โ€ข
1 Parent(s): e3612e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +574 -578
README.md CHANGED
@@ -1,578 +1,574 @@
1
- <!-- ## **HunyuanDiT** -->
2
-
3
- <p align="center">
4
- <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/logo.png" height=100>
5
- </p>
6
-
7
- # Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding
8
-
9
- <div align="center">
10
- <a href="https://github.com/Tencent/HunyuanDiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT Code&message=Github&color=blue&logo=github-pages"></a> &ensp;
11
- <a href="https://dit.hunyuan.tencent.com"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a> &ensp;
12
- <a href="https://arxiv.org/abs/2405.08748"><img src="https://img.shields.io/static/v1?label=Tech Report&message=Arxiv:HunYuan-DiT&color=red&logo=arxiv"></a> &ensp;
13
- <a href="https://arxiv.org/abs/2403.08857"><img src="https://img.shields.io/static/v1?label=Paper&message=Arxiv:DialogGen&color=red&logo=arxiv"></a> &ensp;
14
- <a href="https://huggingface.co/Tencent-Hunyuan/HunyuanDiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT&message=HuggingFace&color=yellow"></a> &ensp;
15
- <a href="https://hunyuan.tencent.com/bot/chat"><img src="https://img.shields.io/static/v1?label=Hunyuan Bot&message=Web&color=green"></a> &ensp;
16
- <a href="https://huggingface.co/spaces/Tencent-Hunyuan/HunyuanDiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT Demo&message=HuggingFace&color=yellow"></a> &ensp;
17
- </div>
18
-
19
- -----
20
-
21
- This repo contains PyTorch model definitions, pre-trained weights and inference/sampling code for our paper exploring Hunyuan-DiT. You can find more visualizations on our [project page](https://dit.hunyuan.tencent.com/).
22
-
23
- > [**Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding**](https://arxiv.org/abs/2405.08748) <br>
24
-
25
- > [**DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation**](https://arxiv.org/abs/2403.08857) <br>
26
-
27
- ## ๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ News!!
28
- * Jun 13, 2024: :zap: HYDiT-v1.1 version is released, which mitigates the issue of image oversaturation and alleviates the watermark issue. Please check [HunyuanDiT-v1.1 ](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1) and
29
- [Distillation-v1.1](https://huggingface.co/Tencent-Hunyuan/Distillation-v1.1) for more details.
30
- * Jun 13, 2024: :truck: The training code is released, offering [full-parameter training](#full-parameter-training) and [LoRA training](#lora).
31
- * Jun 06, 2024: :tada: Hunyuan-DiT is now available in ComfyUI. Please check [ComfyUI](#using-comfyui) for more details.
32
- * Jun 06, 2024: ๐Ÿš€ We introduce Distillation version for Hunyuan-DiT acceleration, which achieves **50%** acceleration on NVIDIA GPUs. Please check [Distillation](https://huggingface.co/Tencent-Hunyuan/Distillation) for more details.
33
- * Jun 05, 2024: ๐Ÿค— Hunyuan-DiT is now available in ๐Ÿค— Diffusers! Please check the [example](#using--diffusers) below.
34
- * Jun 04, 2024: :globe_with_meridians: Support Tencent Cloud links to download the pretrained models! Please check the [links](#-download-pretrained-models) below.
35
- * May 22, 2024: ๐Ÿš€ We introduce TensorRT version for Hunyuan-DiT acceleration, which achieves **47%** acceleration on NVIDIA GPUs. Please check [TensorRT-libs](https://huggingface.co/Tencent-Hunyuan/TensorRT-libs) for instructions.
36
- * May 22, 2024: ๐Ÿ’ฌ We support demo running multi-turn text2image generation now. Please check the [script](#using-gradio) below.
37
-
38
- ## ๐Ÿค– Try it on the web
39
-
40
- Welcome to our web-based [**Tencent Hunyuan Bot**](https://hunyuan.tencent.com/bot/chat), where you can explore our innovative products! Just input the suggested prompts below or any other **imaginative prompts containing drawing-related keywords** to activate the Hunyuan text-to-image generation feature. Unleash your creativity and create any picture you desire, **all for free!**
41
-
42
- You can use simple prompts similar to natural language text
43
-
44
- > ็”ปไธ€ๅช็ฉฟ็€่ฅฟ่ฃ…็š„็Œช
45
- >
46
- > draw a pig in a suit
47
- >
48
- > ็”Ÿๆˆไธ€ๅน…็”ป๏ผŒ่ต›ๅšๆœ‹ๅ…‹้ฃŽ๏ผŒ่ท‘่ฝฆ
49
- >
50
- > generate a painting, cyberpunk style, sports car
51
-
52
- or multi-turn language interactions to create the picture.
53
-
54
- > ็”ปไธ€ไธชๆœจๅˆถ็š„้ธŸ
55
- >
56
- > draw a wooden bird
57
- >
58
- > ๅ˜ๆˆ็Žป็’ƒ็š„
59
- >
60
- > turn into glass
61
-
62
- ## ๐Ÿ“‘ Open-source Plan
63
-
64
- - Hunyuan-DiT (Text-to-Image Model)
65
- - [x] Inference
66
- - [x] Checkpoints
67
- - [x] Distillation Version
68
- - [x] TensorRT Version
69
- - [x] Training
70
- - [x] Lora
71
- - [ ] Controlnet (Pose, Canny, Depth, Tile)
72
- - [ ] IP-adapter
73
- - [ ] Hunyuan-DiT-XL checkpoints (0.7B model)
74
- - [ ] Caption model (Re-caption the raw image-text pairs)
75
- - [DialogGen](https://github.com/Centaurusalpha/DialogGen) (Prompt Enhancement Model)
76
- - [x] Inference
77
- - [X] Web Demo (Gradio)
78
- - [x] Multi-turn T2I Demo (Gradio)
79
- - [X] Cli Demo
80
- - [X] ComfyUI
81
- - [X] Diffusers
82
- - [ ] WebUI
83
-
84
-
85
- ## Contents
86
- - [Hunyuan-DiT](#hunyuan-dit--a-powerful-multi-resolution-diffusion-transformer-with-fine-grained-chinese-understanding)
87
- - [Abstract](#abstract)
88
- - [๐ŸŽ‰ Hunyuan-DiT Key Features](#-hunyuan-dit-key-features)
89
- - [Chinese-English Bilingual DiT Architecture](#chinese-english-bilingual-dit-architecture)
90
- - [Multi-turn Text2Image Generation](#multi-turn-text2image-generation)
91
- - [๐Ÿ“ˆ Comparisons](#-comparisons)
92
- - [๐ŸŽฅ Visualization](#-visualization)
93
- - [๐Ÿ“œ Requirements](#-requirements)
94
- - [๐Ÿ›  Dependencies and Installation](#%EF%B8%8F-dependencies-and-installation)
95
- - [๐Ÿงฑ Download Pretrained Models](#-download-pretrained-models)
96
- - [:truck: Training](#truck-training)
97
- - [Data Preparation](#data-preparation)
98
- - [Full Parameter Training](#full-parameter-training)
99
- - [LoRA](#lora)
100
- - [๐Ÿ”‘ Inference](#-inference)
101
- - [Using Gradio](#using-gradio)
102
- - [Using Diffusers](#using--diffusers)
103
- - [Using Command Line](#using-command-line)
104
- - [More Configurations](#more-configurations)
105
- - [Using ComfyUI](#using-comfyui)
106
- - [๐Ÿš€ Acceleration (for Linux)](#-acceleration-for-linux)
107
- - [๐Ÿ”— BibTeX](#-bibtex)
108
-
109
- ## **Abstract**
110
-
111
- We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully designed the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-round multi-modal dialogue with users, generating and refining images according to the context.
112
- Through our carefully designed holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models.
113
-
114
-
115
- ## ๐ŸŽ‰ **Hunyuan-DiT Key Features**
116
- ### **Chinese-English Bilingual DiT Architecture**
117
- Hunyuan-DiT is a diffusion model in the latent space, as depicted in figure below. Following the Latent Diffusion Model, we use a pre-trained Variational Autoencoder (VAE) to compress the images into low-dimensional latent spaces and train a diffusion model to learn the data distribution with diffusion models. Our diffusion model is parameterized with a transformer. To encode the text prompts, we leverage a combination of pre-trained bilingual (English and Chinese) CLIP and multilingual T5 encoder.
118
- <p align="center">
119
- <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/framework.png" height=450>
120
- </p>
121
-
122
- ### Multi-turn Text2Image Generation
123
- Understanding natural language instructions and performing multi-turn interaction with users are important for a
124
- text-to-image system. It can help build a dynamic and iterative creation process that bring the userโ€™s idea into reality
125
- step by step. In this section, we will detail how we empower Hunyuan-DiT with the ability to perform multi-round
126
- conversations and image generation. We train MLLM to understand the multi-round user dialogue
127
- and output the new text prompt for image generation.
128
- <p align="center">
129
- <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/mllm.png" height=300>
130
- </p>
131
-
132
- ## ๐Ÿ“ˆ Comparisons
133
- In order to comprehensively compare the generation capabilities of HunyuanDiT and other models, we constructed a 4-dimensional test set, including Text-Image Consistency, Excluding AI Artifacts, Subject Clarity, Aesthetic. More than 50 professional evaluators performs the evaluation.
134
-
135
- <p align="center">
136
- <table>
137
- <thead>
138
- <tr>
139
- <th rowspan="2">Model</th> <th rowspan="2">Open Source</th> <th>Text-Image Consistency (%)</th> <th>Excluding AI Artifacts (%)</th> <th>Subject Clarity (%)</th> <th rowspan="2">Aesthetics (%)</th> <th rowspan="2">Overall (%)</th>
140
- </tr>
141
- </thead>
142
- <tbody>
143
- <tr>
144
- <td>SDXL</td> <td> โœ” </td> <td>64.3</td> <td>60.6</td> <td>91.1</td> <td>76.3</td> <td>42.7</td>
145
- </tr>
146
- <tr>
147
- <td>PixArt-ฮฑ</td> <td> โœ”</td> <td>68.3</td> <td>60.9</td> <td>93.2</td> <td>77.5</td> <td>45.5</td>
148
- </tr>
149
- <tr>
150
- <td>Playground 2.5</td> <td>โœ”</td> <td>71.9</td> <td>70.8</td> <td>94.9</td> <td>83.3</td> <td>54.3</td>
151
- </tr>
152
-
153
- <tr>
154
- <td>SD 3</td> <td>&#10008</td> <td>77.1</td> <td>69.3</td> <td>94.6</td> <td>82.5</td> <td>56.7</td>
155
-
156
- </tr>
157
- <tr>
158
- <td>MidJourney v6</td><td>&#10008</td> <td>73.5</td> <td>80.2</td> <td>93.5</td> <td>87.2</td> <td>63.3</td>
159
- </tr>
160
- <tr>
161
- <td>DALL-E 3</td><td>&#10008</td> <td>83.9</td> <td>80.3</td> <td>96.5</td> <td>89.4</td> <td>71.0</td>
162
- </tr>
163
- <tr style="font-weight: bold; background-color: #f2f2f2;">
164
- <td>Hunyuan-DiT</td><td>โœ”</td> <td>74.2</td> <td>74.3</td> <td>95.4</td> <td>86.6</td> <td>59.0</td>
165
- </tr>
166
- </tbody>
167
- </table>
168
- </p>
169
-
170
- ## ๐ŸŽฅ Visualization
171
-
172
- * **Chinese Elements**
173
- <p align="center">
174
- <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/chinese elements understanding.png" height=220>
175
- </p>
176
-
177
- * **Long Text Input**
178
-
179
-
180
- <p align="center">
181
- <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/long text understanding.png" height=310>
182
- </p>
183
-
184
- * **Multi-turn Text2Image Generation**
185
-
186
- https://github.com/Tencent/tencent.github.io/assets/27557933/94b4dcc3-104d-44e1-8bb2-dc55108763d1
187
-
188
-
189
-
190
- ---
191
-
192
- ## ๐Ÿ“œ Requirements
193
-
194
- This repo consists of DialogGen (a prompt enhancement model) and Hunyuan-DiT (a text-to-image model).
195
-
196
- The following table shows the requirements for running the models (batch size = 1):
197
-
198
- | Model | --load-4bit (DialogGen) | GPU Peak Memory | GPU |
199
- |:-----------------------:|:-----------------------:|:---------------:|:---------------:|
200
- | DialogGen + Hunyuan-DiT | โœ˜ | 32G | A100 |
201
- | DialogGen + Hunyuan-DiT | โœ” | 22G | A100 |
202
- | Hunyuan-DiT | - | 11G | A100 |
203
- | Hunyuan-DiT | - | 14G | RTX3090/RTX4090 |
204
-
205
- * An NVIDIA GPU with CUDA support is required.
206
- * We have tested V100 and A100 GPUs.
207
- * **Minimum**: The minimum GPU memory required is 11GB.
208
- * **Recommended**: We recommend using a GPU with 32GB of memory for better generation quality.
209
- * Tested operating system: Linux
210
-
211
- ## ๐Ÿ› ๏ธ Dependencies and Installation
212
-
213
- Begin by cloning the repository:
214
- ```shell
215
- git clone https://github.com/tencent/HunyuanDiT
216
- cd HunyuanDiT
217
- ```
218
-
219
- ### Installation Guide for Linux
220
-
221
- We provide an `environment.yml` file for setting up a Conda environment.
222
- Conda's installation instructions are available [here](https://docs.anaconda.com/free/miniconda/index.html).
223
-
224
- ```shell
225
- # 1. Prepare conda environment
226
- conda env create -f environment.yml
227
-
228
- # 2. Activate the environment
229
- conda activate HunyuanDiT
230
-
231
- # 3. Install pip dependencies
232
- python -m pip install -r requirements.txt
233
-
234
- # 4. (Optional) Install flash attention v2 for acceleration (requires CUDA 11.6 or above)
235
- python -m pip install git+https://github.com/Dao-AILab/flash-attention.[email protected]
236
- ```
237
-
238
- ## ๐Ÿงฑ Download Pretrained Models
239
- To download the model, first install the huggingface-cli. (Detailed instructions are available [here](https://huggingface.co/docs/huggingface_hub/guides/cli).)
240
-
241
- ```shell
242
- python -m pip install "huggingface_hub[cli]"
243
- ```
244
-
245
- Then download the model using the following commands:
246
-
247
- ```shell
248
- # Create a directory named 'ckpts' where the model will be saved, fulfilling the prerequisites for running the demo.
249
- mkdir ckpts
250
- # Use the huggingface-cli tool to download the model.
251
- # The download time may vary from 10 minutes to 1 hour depending on network conditions.
252
- huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./ckpts
253
- ```
254
-
255
- <details>
256
- <summary>๐Ÿ’กTips for using huggingface-cli (network problem)</summary>
257
-
258
- ##### 1. Using HF-Mirror
259
-
260
- If you encounter slow download speeds in China, you can try a mirror to speed up the download process. For example,
261
-
262
- ```shell
263
- HF_ENDPOINT=https://hf-mirror.com huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./ckpts
264
- ```
265
-
266
- ##### 2. Resume Download
267
-
268
- `huggingface-cli` supports resuming downloads. If the download is interrupted, you can just rerun the download
269
- command to resume the download process.
270
-
271
- Note: If an `No such file or directory: 'ckpts/.huggingface/.gitignore.lock'` like error occurs during the download
272
- process, you can ignore the error and rerun the download command.
273
-
274
- </details>
275
-
276
- ---
277
-
278
- All models will be automatically downloaded. For more information about the model, visit the Hugging Face repository [here](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT).
279
-
280
- | Model | #Params | Huggingface Download URL | Tencent Cloud Download URL |
281
- |:------------------:|:-------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|
282
- | mT5 | 1.6B | [mT5](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/mt5) | [mT5](https://dit.hunyuan.tencent.com/download/HunyuanDiT/mt5.zip) |
283
- | CLIP | 350M | [CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/clip_text_encoder) | [CLIP](https://dit.hunyuan.tencent.com/download/HunyuanDiT/clip_text_encoder.zip) |
284
- | Tokenizer | - | [Tokenizer](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/tokenizer) | [Tokenizer](https://dit.hunyuan.tencent.com/download/HunyuanDiT/tokenizer.zip) |
285
- | DialogGen | 7.0B | [DialogGen](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/dialoggen) | [DialogGen](https://dit.hunyuan.tencent.com/download/HunyuanDiT/dialoggen.zip) |
286
- | sdxl-vae-fp16-fix | 83M | [sdxl-vae-fp16-fix](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/sdxl-vae-fp16-fix) | [sdxl-vae-fp16-fix](https://dit.hunyuan.tencent.com/download/HunyuanDiT/sdxl-vae-fp16-fix.zip) |
287
- | Hunyuan-DiT | 1.5B | [Hunyuan-DiT](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/model) | [Hunyuan-DiT](https://dit.hunyuan.tencent.com/download/HunyuanDiT/model.zip) |
288
- | Data demo | - | - | [Data demo](https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip) |
289
-
290
- ## :truck: Training
291
-
292
- ### Data Preparation
293
-
294
- Refer to the commands below to prepare the training data.
295
-
296
- 1. Install dependencies
297
-
298
- We offer an efficient data management library, named IndexKits, supporting the management of reading hundreds of millions of data during training, see more in [docs](./IndexKits/README.md).
299
- ```shell
300
- # 1 Install dependencies
301
- cd HunyuanDiT
302
- pip install -e ./IndexKits
303
- ```
304
- 2. Data download
305
-
306
- Feel free to download the [data demo](https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip).
307
- ```shell
308
- # 2 Data download
309
- wget -O ./dataset/data_demo.zip https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip
310
- unzip ./dataset/data_demo.zip -d ./dataset
311
- mkdir ./dataset/porcelain/arrows ./dataset/porcelain/jsons
312
- ```
313
- 3. Data conversion
314
-
315
- Create a CSV file for training data with the fields listed in the table below.
316
-
317
- | Fields | Required | Description | Example |
318
- |:---------------:| :------: |:----------------:|:-----------:|
319
- | `image_path` | Required | image path | `./dataset/porcelain/images/0.png` |
320
- | `text_zh` | Required | text | ้’่Šฑ็“ท้ฃŽๆ ผ๏ผŒไธ€ๅช่“่‰ฒ็š„้ธŸๅ„ฟ็ซ™ๅœจ่“่‰ฒ็š„่Šฑ็“ถไธŠ๏ผŒๅ‘จๅ›ด็‚น็ผ€็€็™ฝ่‰ฒ่Šฑๆœต๏ผŒ่ƒŒๆ™ฏๆ˜ฏ็™ฝ่‰ฒ |
321
- | `md5` | Optional | image md5 (Message Digest Algorithm 5) | `d41d8cd98f00b204e9800998ecf8427e` |
322
- | `width` | Optional | image width | `1024 ` |
323
- | `height` | Optional | image height | ` 1024 ` |
324
-
325
- > โš ๏ธ Optional fields like MD5, width, and height can be omitted. If omitted, the script below will automatically calculate them. This process can be time-consuming when dealing with large-scale training data.
326
-
327
- We utilize [Arrow](https://github.com/apache/arrow) for training data format, offering a standard and efficient in-memory data representation. A conversion script is provided to transform CSV files into Arrow format.
328
- ```shell
329
- # 3 Data conversion
330
- python ./hydit/data_loader/csv2arrow.py ./dataset/porcelain/csvfile/image_text.csv ./dataset/porcelain/arrows
331
- ```
332
-
333
- 4. Data Selection and Configuration File Creation
334
-
335
- We configure the training data through YAML files. In these files, you can set up standard data processing strategies for filtering, copying, deduplicating, and more regarding the training data. For more details, see [docs](IndexKits/docs/MakeDataset.md).
336
-
337
- For a sample file, please refer to [file](./dataset/yamls/porcelain.yaml). For a full parameter configuration file, see [file](./IndexKits/docs/MakeDataset.md).
338
-
339
-
340
- 5. Create training data index file using YAML file.
341
-
342
- ```shell
343
- # Single Resolution Data Preparation
344
- cd /HunyuanDiT
345
- idk base -c dataset/yamls/porcelain.yaml -t dataset/porcelain/jsons/porcelain.json
346
-
347
- # Multi Resolution Data Preparation
348
- idk multireso -c dataset/yamls/porcelain_mt.yaml -t dataset/porcelain/jsons/porcelain_mt.json
349
- ```
350
-
351
- The directory structure for `porcelain` dataset is:
352
-
353
- ```shell
354
- cd ./dataset
355
-
356
- porcelain
357
- โ”œโ”€โ”€images/ (image files)
358
- โ”‚ โ”œโ”€โ”€0.png
359
- โ”‚ โ”œโ”€โ”€1.png
360
- โ”‚ โ”œโ”€โ”€......
361
- โ”œโ”€โ”€csvfile/ (csv files containing text-image pairs)
362
- โ”‚ โ”œโ”€โ”€image_text.csv
363
- โ”œโ”€โ”€arrows/ (arrow files containing all necessary training data)
364
- โ”‚ โ”œโ”€โ”€00000.arrow
365
- โ”‚ โ”œโ”€โ”€00001.arrow
366
- โ”‚ โ”œโ”€โ”€......
367
- โ”œโ”€โ”€jsons/ (final training data index files which read data from arrow files during training)
368
- โ”‚ โ”œโ”€โ”€porcelain.json
369
- โ”‚ โ”œโ”€โ”€porcelain_mt.json
370
- ```
371
-
372
- ### Full-parameter Training
373
-
374
- To leverage DeepSpeed in training, you have the flexibility to control **single-node** / **multi-node** training by adjusting parameters such as `--hostfile` and `--master_addr`. For more details, see [link](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node).
375
-
376
- ```shell
377
- # Single Resolution Data Preparation
378
- PYTHONPATH=./ sh hydit/train.sh --index-file dataset/porcelain/jsons/porcelain.json
379
-
380
- # Multi Resolution Data Preparation
381
- PYTHONPATH=./ sh hydit/train.sh --index-file dataset/porcelain/jsons/porcelain.json --multireso --reso-step 64
382
- ```
383
-
384
- ### LoRA
385
-
386
- We provide training and inference scripts for LoRA, detailed in the [guidances](./lora/README.md).
387
-
388
-
389
- ## ๐Ÿ”‘ Inference
390
-
391
- ### Using Gradio
392
-
393
- Make sure the conda environment is activated before running the following command.
394
-
395
- ```shell
396
- # By default, we start a Chinese UI.
397
- python app/hydit_app.py
398
-
399
- # Using Flash Attention for acceleration.
400
- python app/hydit_app.py --infer-mode fa
401
-
402
- # You can disable the enhancement model if the GPU memory is insufficient.
403
- # The enhancement will be unavailable until you restart the app without the `--no-enhance` flag.
404
- python app/hydit_app.py --no-enhance
405
-
406
- # Start with English UI
407
- python app/hydit_app.py --lang en
408
-
409
- # Start a multi-turn T2I generation UI.
410
- # If your GPU memory is less than 32GB, use '--load-4bit' to enable 4-bit quantization, which requires at least 22GB of memory.
411
- python app/multiTurnT2I_app.py
412
- ```
413
- Then the demo can be accessed through http://0.0.0.0:443. It should be noted that the 0.0.0.0 here needs to be X.X.X.X with your server IP.
414
-
415
- ### Using ๐Ÿค— Diffusers
416
-
417
- Please install PyTorch version 2.0 or higher in advance to satisfy the requirements of the specified version of the diffusers library.
418
-
419
- Install ๐Ÿค— diffusers, ensuring that the version is at least 0.28.1:
420
-
421
- ```shell
422
- pip install git+https://github.com/huggingface/diffusers.git
423
- ```
424
- or
425
- ```shell
426
- pip install diffusers
427
- ```
428
-
429
- You can generate images with both Chinese and English prompts using the following Python script:
430
- ```py
431
- import torch
432
- from diffusers import HunyuanDiTPipeline
433
-
434
- pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16)
435
- pipe.to("cuda")
436
-
437
- # You may also use English prompt as HunyuanDiT supports both English and Chinese
438
- # prompt = "An astronaut riding a horse"
439
- prompt = "ไธ€ไธชๅฎ‡่ˆชๅ‘˜ๅœจ้ช‘้ฉฌ"
440
- image = pipe(prompt).images[0]
441
- ```
442
- You can use our distilled model to generate images even faster:
443
-
444
- ```py
445
- import torch
446
- from diffusers import HunyuanDiTPipeline
447
-
448
- pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-Diffusers-Distilled", torch_dtype=torch.float16)
449
- pipe.to("cuda")
450
-
451
- # You may also use English prompt as HunyuanDiT supports both English and Chinese
452
- # prompt = "An astronaut riding a horse"
453
- prompt = "ไธ€ไธชๅฎ‡่ˆชๅ‘˜ๅœจ้ช‘้ฉฌ"
454
- image = pipe(prompt, num_inference_steps=25).images[0]
455
- ```
456
- More details can be found in [HunyuanDiT-Diffusers-Distilled](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-Diffusers-Distilled)
457
-
458
- ### Using Command Line
459
-
460
- We provide several commands to quick start:
461
-
462
- ```shell
463
- # Prompt Enhancement + Text-to-Image. Torch mode
464
- python sample_t2i.py --prompt "ๆธ”่ˆŸๅ”ฑๆ™š"
465
-
466
- # Only Text-to-Image. Torch mode
467
- python sample_t2i.py --prompt "ๆธ”่ˆŸๅ”ฑๆ™š" --no-enhance
468
-
469
- # Only Text-to-Image. Flash Attention mode
470
- python sample_t2i.py --infer-mode fa --prompt "ๆธ”่ˆŸๅ”ฑๆ™š"
471
-
472
- # Generate an image with other image sizes.
473
- python sample_t2i.py --prompt "ๆธ”่ˆŸๅ”ฑๆ™š" --image-size 1280 768
474
-
475
- # Prompt Enhancement + Text-to-Image. DialogGen loads with 4-bit quantization, but it may loss performance.
476
- python sample_t2i.py --prompt "ๆธ”่ˆŸๅ”ฑๆ™š" --load-4bit
477
-
478
- ```
479
-
480
- More example prompts can be found in [example_prompts.txt](example_prompts.txt)
481
-
482
- ### More Configurations
483
-
484
- We list some more useful configurations for easy usage:
485
-
486
- | Argument | Default | Description |
487
- |:---------------:|:---------:|:---------------------------------------------------:|
488
- | `--prompt` | None | The text prompt for image generation |
489
- | `--image-size` | 1024 1024 | The size of the generated image |
490
- | `--seed` | 42 | The random seed for generating images |
491
- | `--infer-steps` | 100 | The number of steps for sampling |
492
- | `--negative` | - | The negative prompt for image generation |
493
- | `--infer-mode` | torch | The inference mode (torch, fa, or trt) |
494
- | `--sampler` | ddpm | The diffusion sampler (ddpm, ddim, or dpmms) |
495
- | `--no-enhance` | False | Disable the prompt enhancement model |
496
- | `--model-root` | ckpts | The root directory of the model checkpoints |
497
- | `--load-key` | ema | Load the student model or EMA model (ema or module) |
498
- | `--load-4bit` | Fasle | Load DialogGen model with 4bit quantization |
499
-
500
- ### Using ComfyUI
501
-
502
- We provide several commands to quick start:
503
-
504
- ```shell
505
- # Download comfyui code
506
- git clone https://github.com/comfyanonymous/ComfyUI.git
507
-
508
- # Install torch, torchvision, torchaudio
509
- pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu117
510
-
511
- # Install Comfyui essential python package
512
- cd ComfyUI
513
- pip install -r requirements.txt
514
-
515
- # ComfyUI has been successfully installed!
516
-
517
- # Download model weight as before or link the existing model folder to ComfyUI.
518
- python -m pip install "huggingface_hub[cli]"
519
- mkdir models/hunyuan
520
- huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./models/hunyuan/ckpts
521
-
522
- # Move to the ComfyUI custom_nodes folder and copy comfyui-hydit folder from HunyuanDiT Repo.
523
- cd custom_nodes
524
- cp -r ${HunyuanDiT}/comfyui-hydit ./
525
- cd comfyui-hydit
526
-
527
- # Install some essential python Package.
528
- pip install -r requirements.txt
529
-
530
- # Our tool has been successfully installed!
531
-
532
- # Go to ComfyUI main folder
533
- cd ../..
534
- # Run the ComfyUI Lauch command
535
- python main.py --listen --port 80
536
-
537
- # Running ComfyUI successfully!
538
- ```
539
- More details can be found in [ComfyUI README](comfyui-hydit/README.md)
540
-
541
- ## ๐Ÿš€ Acceleration (for Linux)
542
-
543
- - We provide TensorRT version of HunyuanDiT for inference acceleration (faster than flash attention).
544
- See [Tencent-Hunyuan/TensorRT-libs](https://huggingface.co/Tencent-Hunyuan/TensorRT-libs) for more details.
545
-
546
- - We provide Distillation version of HunyuanDiT for inference acceleration.
547
- See [Tencent-Hunyuan/Distillation](https://huggingface.co/Tencent-Hunyuan/Distillation) for more details.
548
-
549
- ## ๐Ÿ”— BibTeX
550
- If you find [Hunyuan-DiT](https://arxiv.org/abs/2405.08748) or [DialogGen](https://arxiv.org/abs/2403.08857) useful for your research and applications, please cite using this BibTeX:
551
-
552
- ```BibTeX
553
- @misc{li2024hunyuandit,
554
- title={Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding},
555
- author={Zhimin Li and Jianwei Zhang and Qin Lin and Jiangfeng Xiong and Yanxin Long and Xinchi Deng and Yingfang Zhang and Xingchao Liu and Minbin Huang and Zedong Xiao and Dayou Chen and Jiajun He and Jiahao Li and Wenyue Li and Chen Zhang and Rongwei Quan and Jianxiang Lu and Jiabin Huang and Xiaoyan Yuan and Xiaoxiao Zheng and Yixuan Li and Jihong Zhang and Chao Zhang and Meng Chen and Jie Liu and Zheng Fang and Weiyan Wang and Jinbao Xue and Yangyu Tao and Jianchen Zhu and Kai Liu and Sihuan Lin and Yifu Sun and Yun Li and Dongdong Wang and Mingtao Chen and Zhichao Hu and Xiao Xiao and Yan Chen and Yuhong Liu and Wei Liu and Di Wang and Yong Yang and Jie Jiang and Qinglin Lu},
556
- year={2024},
557
- eprint={2405.08748},
558
- archivePrefix={arXiv},
559
- primaryClass={cs.CV}
560
- }
561
-
562
- @article{huang2024dialoggen,
563
- title={DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation},
564
- author={Huang, Minbin and Long, Yanxin and Deng, Xinchi and Chu, Ruihang and Xiong, Jiangfeng and Liang, Xiaodan and Cheng, Hong and Lu, Qinglin and Liu, Wei},
565
- journal={arXiv preprint arXiv:2403.08857},
566
- year={2024}
567
- }
568
- ```
569
-
570
- ## Start History
571
-
572
- <a href="https://star-history.com/#Tencent/HunyuanDiT&Date">
573
- <picture>
574
- <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Tencent/HunyuanDiT&type=Date&theme=dark" />
575
- <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Tencent/HunyuanDiT&type=Date" />
576
- <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Tencent/HunyuanDiT&type=Date" />
577
- </picture>
578
- </a>
 
1
+ ---
2
+ license: other
3
+ license_name: tencent-hunyuan-community
4
+ license_link: https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/blob/main/LICENSE.txt
5
+ language:
6
+ - en
7
+ ---
8
+ <!-- ## **HunyuanDiT** -->
9
+
10
+ <p align="center">
11
+ <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/logo.png" height=100>
12
+ </p>
13
+
14
+ # Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding
15
+
16
+
17
+ This repo contains PyTorch model definitions, pre-trained weights and inference/sampling code for our paper exploring Hunyuan-DiT. You can find more visualizations on our [project page](https://dit.hunyuan.tencent.com/).
18
+
19
+ > [**Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding**](https://arxiv.org/abs/2405.08748) <br>
20
+
21
+ > [**DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation**](https://arxiv.org/abs/2403.08857) <br>
22
+
23
+ ## ๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ News!!
24
+ * Jun 13, 2024: :zap: HYDiT-v1.1 version is released, which mitigates the issue of image oversaturation and alleviates the watermark issue. Please check [HunyuanDiT-v1.1 ](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1) and
25
+ [Distillation-v1.1](https://huggingface.co/Tencent-Hunyuan/Distillation-v1.1) for more details.
26
+ * Jun 13, 2024: :truck: The training code is released, offering [full-parameter training](#full-parameter-training) and [LoRA training](#lora).
27
+ * Jun 06, 2024: :tada: Hunyuan-DiT is now available in ComfyUI. Please check [ComfyUI](#using-comfyui) for more details.
28
+ * Jun 06, 2024: ๐Ÿš€ We introduce Distillation version for Hunyuan-DiT acceleration, which achieves **50%** acceleration on NVIDIA GPUs. Please check [Distillation](https://huggingface.co/Tencent-Hunyuan/Distillation) for more details.
29
+ * Jun 05, 2024: ๐Ÿค— Hunyuan-DiT is now available in ๐Ÿค— Diffusers! Please check the [example](#using--diffusers) below.
30
+ * Jun 04, 2024: :globe_with_meridians: Support Tencent Cloud links to download the pretrained models! Please check the [links](#-download-pretrained-models) below.
31
+ * May 22, 2024: ๐Ÿš€ We introduce TensorRT version for Hunyuan-DiT acceleration, which achieves **47%** acceleration on NVIDIA GPUs. Please check [TensorRT-libs](https://huggingface.co/Tencent-Hunyuan/TensorRT-libs) for instructions.
32
+ * May 22, 2024: ๐Ÿ’ฌ We support demo running multi-turn text2image generation now. Please check the [script](#using-gradio) below.
33
+
34
+ ## ๐Ÿค– Try it on the web
35
+
36
+ Welcome to our web-based [**Tencent Hunyuan Bot**](https://hunyuan.tencent.com/bot/chat), where you can explore our innovative products! Just input the suggested prompts below or any other **imaginative prompts containing drawing-related keywords** to activate the Hunyuan text-to-image generation feature. Unleash your creativity and create any picture you desire, **all for free!**
37
+
38
+ You can use simple prompts similar to natural language text
39
+
40
+ > ็”ปไธ€ๅช็ฉฟ็€่ฅฟ่ฃ…็š„็Œช
41
+ >
42
+ > draw a pig in a suit
43
+ >
44
+ > ็”Ÿๆˆไธ€ๅน…็”ป๏ผŒ่ต›ๅšๆœ‹ๅ…‹้ฃŽ๏ผŒ่ท‘่ฝฆ
45
+ >
46
+ > generate a painting, cyberpunk style, sports car
47
+
48
+ or multi-turn language interactions to create the picture.
49
+
50
+ > ็”ปไธ€ไธชๆœจๅˆถ็š„้ธŸ
51
+ >
52
+ > draw a wooden bird
53
+ >
54
+ > ๅ˜ๆˆ็Žป็’ƒ็š„
55
+ >
56
+ > turn into glass
57
+
58
+ ## ๐Ÿ“‘ Open-source Plan
59
+
60
+ - Hunyuan-DiT (Text-to-Image Model)
61
+ - [x] Inference
62
+ - [x] Checkpoints
63
+ - [x] Distillation Version
64
+ - [x] TensorRT Version
65
+ - [x] Training
66
+ - [x] Lora
67
+ - [ ] Controlnet (Pose, Canny, Depth, Tile)
68
+ - [ ] IP-adapter
69
+ - [ ] Hunyuan-DiT-XL checkpoints (0.7B model)
70
+ - [ ] Caption model (Re-caption the raw image-text pairs)
71
+ - [DialogGen](https://github.com/Centaurusalpha/DialogGen) (Prompt Enhancement Model)
72
+ - [x] Inference
73
+ - [X] Web Demo (Gradio)
74
+ - [x] Multi-turn T2I Demo (Gradio)
75
+ - [X] Cli Demo
76
+ - [X] ComfyUI
77
+ - [X] Diffusers
78
+ - [ ] WebUI
79
+
80
+
81
+ ## Contents
82
+ - [Hunyuan-DiT](#hunyuan-dit--a-powerful-multi-resolution-diffusion-transformer-with-fine-grained-chinese-understanding)
83
+ - [Abstract](#abstract)
84
+ - [๐ŸŽ‰ Hunyuan-DiT Key Features](#-hunyuan-dit-key-features)
85
+ - [Chinese-English Bilingual DiT Architecture](#chinese-english-bilingual-dit-architecture)
86
+ - [Multi-turn Text2Image Generation](#multi-turn-text2image-generation)
87
+ - [๐Ÿ“ˆ Comparisons](#-comparisons)
88
+ - [๐ŸŽฅ Visualization](#-visualization)
89
+ - [๐Ÿ“œ Requirements](#-requirements)
90
+ - [๐Ÿ›  Dependencies and Installation](#%EF%B8%8F-dependencies-and-installation)
91
+ - [๐Ÿงฑ Download Pretrained Models](#-download-pretrained-models)
92
+ - [:truck: Training](#truck-training)
93
+ - [Data Preparation](#data-preparation)
94
+ - [Full Parameter Training](#full-parameter-training)
95
+ - [LoRA](#lora)
96
+ - [๐Ÿ”‘ Inference](#-inference)
97
+ - [Using Gradio](#using-gradio)
98
+ - [Using Diffusers](#using--diffusers)
99
+ - [Using Command Line](#using-command-line)
100
+ - [More Configurations](#more-configurations)
101
+ - [Using ComfyUI](#using-comfyui)
102
+ - [๐Ÿš€ Acceleration (for Linux)](#-acceleration-for-linux)
103
+ - [๐Ÿ”— BibTeX](#-bibtex)
104
+
105
+ ## **Abstract**
106
+
107
+ We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully designed the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-round multi-modal dialogue with users, generating and refining images according to the context.
108
+ Through our carefully designed holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models.
109
+
110
+
111
+ ## ๐ŸŽ‰ **Hunyuan-DiT Key Features**
112
+ ### **Chinese-English Bilingual DiT Architecture**
113
+ Hunyuan-DiT is a diffusion model in the latent space, as depicted in figure below. Following the Latent Diffusion Model, we use a pre-trained Variational Autoencoder (VAE) to compress the images into low-dimensional latent spaces and train a diffusion model to learn the data distribution with diffusion models. Our diffusion model is parameterized with a transformer. To encode the text prompts, we leverage a combination of pre-trained bilingual (English and Chinese) CLIP and multilingual T5 encoder.
114
+ <p align="center">
115
+ <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/framework.png" height=450>
116
+ </p>
117
+
118
+ ### Multi-turn Text2Image Generation
119
+ Understanding natural language instructions and performing multi-turn interaction with users are important for a
120
+ text-to-image system. It can help build a dynamic and iterative creation process that bring the userโ€™s idea into reality
121
+ step by step. In this section, we will detail how we empower Hunyuan-DiT with the ability to perform multi-round
122
+ conversations and image generation. We train MLLM to understand the multi-round user dialogue
123
+ and output the new text prompt for image generation.
124
+ <p align="center">
125
+ <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/mllm.png" height=300>
126
+ </p>
127
+
128
+ ## ๐Ÿ“ˆ Comparisons
129
+ In order to comprehensively compare the generation capabilities of HunyuanDiT and other models, we constructed a 4-dimensional test set, including Text-Image Consistency, Excluding AI Artifacts, Subject Clarity, Aesthetic. More than 50 professional evaluators performs the evaluation.
130
+
131
+ <p align="center">
132
+ <table>
133
+ <thead>
134
+ <tr>
135
+ <th rowspan="2">Model</th> <th rowspan="2">Open Source</th> <th>Text-Image Consistency (%)</th> <th>Excluding AI Artifacts (%)</th> <th>Subject Clarity (%)</th> <th rowspan="2">Aesthetics (%)</th> <th rowspan="2">Overall (%)</th>
136
+ </tr>
137
+ </thead>
138
+ <tbody>
139
+ <tr>
140
+ <td>SDXL</td> <td> โœ” </td> <td>64.3</td> <td>60.6</td> <td>91.1</td> <td>76.3</td> <td>42.7</td>
141
+ </tr>
142
+ <tr>
143
+ <td>PixArt-ฮฑ</td> <td> โœ”</td> <td>68.3</td> <td>60.9</td> <td>93.2</td> <td>77.5</td> <td>45.5</td>
144
+ </tr>
145
+ <tr>
146
+ <td>Playground 2.5</td> <td>โœ”</td> <td>71.9</td> <td>70.8</td> <td>94.9</td> <td>83.3</td> <td>54.3</td>
147
+ </tr>
148
+
149
+ <tr>
150
+ <td>SD 3</td> <td>&#10008</td> <td>77.1</td> <td>69.3</td> <td>94.6</td> <td>82.5</td> <td>56.7</td>
151
+
152
+ </tr>
153
+ <tr>
154
+ <td>MidJourney v6</td><td>&#10008</td> <td>73.5</td> <td>80.2</td> <td>93.5</td> <td>87.2</td> <td>63.3</td>
155
+ </tr>
156
+ <tr>
157
+ <td>DALL-E 3</td><td>&#10008</td> <td>83.9</td> <td>80.3</td> <td>96.5</td> <td>89.4</td> <td>71.0</td>
158
+ </tr>
159
+ <tr style="font-weight: bold; background-color: #f2f2f2;">
160
+ <td>Hunyuan-DiT</td><td>โœ”</td> <td>74.2</td> <td>74.3</td> <td>95.4</td> <td>86.6</td> <td>59.0</td>
161
+ </tr>
162
+ </tbody>
163
+ </table>
164
+ </p>
165
+
166
+ ## ๐ŸŽฅ Visualization
167
+
168
+ * **Chinese Elements**
169
+ <p align="center">
170
+ <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/chinese elements understanding.png" height=220>
171
+ </p>
172
+
173
+ * **Long Text Input**
174
+
175
+
176
+ <p align="center">
177
+ <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/long text understanding.png" height=310>
178
+ </p>
179
+
180
+ * **Multi-turn Text2Image Generation**
181
+
182
+ https://github.com/Tencent/tencent.github.io/assets/27557933/94b4dcc3-104d-44e1-8bb2-dc55108763d1
183
+
184
+
185
+
186
+ ---
187
+
188
+ ## ๐Ÿ“œ Requirements
189
+
190
+ This repo consists of DialogGen (a prompt enhancement model) and Hunyuan-DiT (a text-to-image model).
191
+
192
+ The following table shows the requirements for running the models (batch size = 1):
193
+
194
+ | Model | --load-4bit (DialogGen) | GPU Peak Memory | GPU |
195
+ |:-----------------------:|:-----------------------:|:---------------:|:---------------:|
196
+ | DialogGen + Hunyuan-DiT | โœ˜ | 32G | A100 |
197
+ | DialogGen + Hunyuan-DiT | โœ” | 22G | A100 |
198
+ | Hunyuan-DiT | - | 11G | A100 |
199
+ | Hunyuan-DiT | - | 14G | RTX3090/RTX4090 |
200
+
201
+ * An NVIDIA GPU with CUDA support is required.
202
+ * We have tested V100 and A100 GPUs.
203
+ * **Minimum**: The minimum GPU memory required is 11GB.
204
+ * **Recommended**: We recommend using a GPU with 32GB of memory for better generation quality.
205
+ * Tested operating system: Linux
206
+
207
+ ## ๐Ÿ› ๏ธ Dependencies and Installation
208
+
209
+ Begin by cloning the repository:
210
+ ```shell
211
+ git clone https://github.com/tencent/HunyuanDiT
212
+ cd HunyuanDiT
213
+ ```
214
+
215
+ ### Installation Guide for Linux
216
+
217
+ We provide an `environment.yml` file for setting up a Conda environment.
218
+ Conda's installation instructions are available [here](https://docs.anaconda.com/free/miniconda/index.html).
219
+
220
+ ```shell
221
+ # 1. Prepare conda environment
222
+ conda env create -f environment.yml
223
+
224
+ # 2. Activate the environment
225
+ conda activate HunyuanDiT
226
+
227
+ # 3. Install pip dependencies
228
+ python -m pip install -r requirements.txt
229
+
230
+ # 4. (Optional) Install flash attention v2 for acceleration (requires CUDA 11.6 or above)
231
+ python -m pip install git+https://github.com/Dao-AILab/[email protected]
232
+ ```
233
+
234
+ ## ๐Ÿงฑ Download Pretrained Models
235
+ To download the model, first install the huggingface-cli. (Detailed instructions are available [here](https://huggingface.co/docs/huggingface_hub/guides/cli).)
236
+
237
+ ```shell
238
+ python -m pip install "huggingface_hub[cli]"
239
+ ```
240
+
241
+ Then download the model using the following commands:
242
+
243
+ ```shell
244
+ # Create a directory named 'ckpts' where the model will be saved, fulfilling the prerequisites for running the demo.
245
+ mkdir ckpts
246
+ # Use the huggingface-cli tool to download the model.
247
+ # The download time may vary from 10 minutes to 1 hour depending on network conditions.
248
+ huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./ckpts
249
+ ```
250
+
251
+ <details>
252
+ <summary>๐Ÿ’กTips for using huggingface-cli (network problem)</summary>
253
+
254
+ ##### 1. Using HF-Mirror
255
+
256
+ If you encounter slow download speeds in China, you can try a mirror to speed up the download process. For example,
257
+
258
+ ```shell
259
+ HF_ENDPOINT=https://hf-mirror.com huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./ckpts
260
+ ```
261
+
262
+ ##### 2. Resume Download
263
+
264
+ `huggingface-cli` supports resuming downloads. If the download is interrupted, you can just rerun the download
265
+ command to resume the download process.
266
+
267
+ Note: If an `No such file or directory: 'ckpts/.huggingface/.gitignore.lock'` like error occurs during the download
268
+ process, you can ignore the error and rerun the download command.
269
+
270
+ </details>
271
+
272
+ ---
273
+
274
+ All models will be automatically downloaded. For more information about the model, visit the Hugging Face repository [here](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT).
275
+
276
+ | Model | #Params | Huggingface Download URL | Tencent Cloud Download URL |
277
+ |:------------------:|:-------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|
278
+ | mT5 | 1.6B | [mT5](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/mt5) | [mT5](https://dit.hunyuan.tencent.com/download/HunyuanDiT/mt5.zip) |
279
+ | CLIP | 350M | [CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/clip_text_encoder) | [CLIP](https://dit.hunyuan.tencent.com/download/HunyuanDiT/clip_text_encoder.zip) |
280
+ | Tokenizer | - | [Tokenizer](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/tokenizer) | [Tokenizer](https://dit.hunyuan.tencent.com/download/HunyuanDiT/tokenizer.zip) |
281
+ | DialogGen | 7.0B | [DialogGen](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/dialoggen) | [DialogGen](https://dit.hunyuan.tencent.com/download/HunyuanDiT/dialoggen.zip) |
282
+ | sdxl-vae-fp16-fix | 83M | [sdxl-vae-fp16-fix](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/sdxl-vae-fp16-fix) | [sdxl-vae-fp16-fix](https://dit.hunyuan.tencent.com/download/HunyuanDiT/sdxl-vae-fp16-fix.zip) |
283
+ | Hunyuan-DiT | 1.5B | [Hunyuan-DiT](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/model) | [Hunyuan-DiT](https://dit.hunyuan.tencent.com/download/HunyuanDiT/model.zip) |
284
+ | Data demo | - | - | [Data demo](https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip) |
285
+
286
+ ## :truck: Training
287
+
288
+ ### Data Preparation
289
+
290
+ Refer to the commands below to prepare the training data.
291
+
292
+ 1. Install dependencies
293
+
294
+ We offer an efficient data management library, named IndexKits, supporting the management of reading hundreds of millions of data during training, see more in [docs](./IndexKits/README.md).
295
+ ```shell
296
+ # 1 Install dependencies
297
+ cd HunyuanDiT
298
+ pip install -e ./IndexKits
299
+ ```
300
+ 2. Data download
301
+
302
+ Feel free to download the [data demo](https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip).
303
+ ```shell
304
+ # 2 Data download
305
+ wget -O ./dataset/data_demo.zip https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip
306
+ unzip ./dataset/data_demo.zip -d ./dataset
307
+ mkdir ./dataset/porcelain/arrows ./dataset/porcelain/jsons
308
+ ```
309
+ 3. Data conversion
310
+
311
+ Create a CSV file for training data with the fields listed in the table below.
312
+
313
+ | Fields | Required | Description | Example |
314
+ |:---------------:| :------: |:----------------:|:-----------:|
315
+ | `image_path` | Required | image path | `./dataset/porcelain/images/0.png` |
316
+ | `text_zh` | Required | text | ้’่Šฑ็“ท้ฃŽๆ ผ๏ผŒไธ€ๅช่“่‰ฒ็š„้ธŸๅ„ฟ็ซ™ๅœจ่“่‰ฒ็š„่Šฑ็“ถไธŠ๏ผŒๅ‘จๅ›ด็‚น็ผ€็€็™ฝ่‰ฒ่Šฑๆœต๏ผŒ่ƒŒๆ™ฏๆ˜ฏ็™ฝ่‰ฒ |
317
+ | `md5` | Optional | image md5 (Message Digest Algorithm 5) | `d41d8cd98f00b204e9800998ecf8427e` |
318
+ | `width` | Optional | image width | `1024 ` |
319
+ | `height` | Optional | image height | ` 1024 ` |
320
+
321
+ > โš ๏ธ Optional fields like MD5, width, and height can be omitted. If omitted, the script below will automatically calculate them. This process can be time-consuming when dealing with large-scale training data.
322
+
323
+ We utilize [Arrow](https://github.com/apache/arrow) for training data format, offering a standard and efficient in-memory data representation. A conversion script is provided to transform CSV files into Arrow format.
324
+ ```shell
325
+ # 3 Data conversion
326
+ python ./hydit/data_loader/csv2arrow.py ./dataset/porcelain/csvfile/image_text.csv ./dataset/porcelain/arrows
327
+ ```
328
+
329
+ 4. Data Selection and Configuration File Creation
330
+
331
+ We configure the training data through YAML files. In these files, you can set up standard data processing strategies for filtering, copying, deduplicating, and more regarding the training data. For more details, see [docs](IndexKits/docs/MakeDataset.md).
332
+
333
+ For a sample file, please refer to [file](./dataset/yamls/porcelain.yaml). For a full parameter configuration file, see [file](./IndexKits/docs/MakeDataset.md).
334
+
335
+
336
+ 5. Create training data index file using YAML file.
337
+
338
+ ```shell
339
+ # Single Resolution Data Preparation
340
+ cd /HunyuanDiT
341
+ idk base -c dataset/yamls/porcelain.yaml -t dataset/porcelain/jsons/porcelain.json
342
+
343
+ # Multi Resolution Data Preparation
344
+ idk multireso -c dataset/yamls/porcelain_mt.yaml -t dataset/porcelain/jsons/porcelain_mt.json
345
+ ```
346
+
347
+ The directory structure for `porcelain` dataset is:
348
+
349
+ ```shell
350
+ cd ./dataset
351
+
352
+ porcelain
353
+ โ”œโ”€โ”€images/ (image files)
354
+ โ”‚ โ”œโ”€โ”€0.png
355
+ โ”‚ โ”œโ”€โ”€1.png
356
+ โ”‚ โ”œโ”€โ”€......
357
+ โ”œโ”€โ”€csvfile/ (csv files containing text-image pairs)
358
+ โ”‚ โ”œโ”€โ”€image_text.csv
359
+ โ”œโ”€โ”€arrows/ (arrow files containing all necessary training data)
360
+ โ”‚ โ”œโ”€โ”€00000.arrow
361
+ โ”‚ โ”œโ”€โ”€00001.arrow
362
+ โ”‚ โ”œโ”€โ”€......
363
+ โ”œโ”€โ”€jsons/ (final training data index files which read data from arrow files during training)
364
+ โ”‚ โ”œโ”€โ”€porcelain.json
365
+ โ”‚ โ”œโ”€โ”€porcelain_mt.json
366
+ ```
367
+
368
+ ### Full-parameter Training
369
+
370
+ To leverage DeepSpeed in training, you have the flexibility to control **single-node** / **multi-node** training by adjusting parameters such as `--hostfile` and `--master_addr`. For more details, see [link](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node).
371
+
372
+ ```shell
373
+ # Single Resolution Data Preparation
374
+ PYTHONPATH=./ sh hydit/train.sh --index-file dataset/porcelain/jsons/porcelain.json
375
+
376
+ # Multi Resolution Data Preparation
377
+ PYTHONPATH=./ sh hydit/train.sh --index-file dataset/porcelain/jsons/porcelain.json --multireso --reso-step 64
378
+ ```
379
+
380
+ ### LoRA
381
+
382
+ We provide training and inference scripts for LoRA, detailed in the [guidances](./lora/README.md).
383
+
384
+
385
+ ## ๐Ÿ”‘ Inference
386
+
387
+ ### Using Gradio
388
+
389
+ Make sure the conda environment is activated before running the following command.
390
+
391
+ ```shell
392
+ # By default, we start a Chinese UI.
393
+ python app/hydit_app.py
394
+
395
+ # Using Flash Attention for acceleration.
396
+ python app/hydit_app.py --infer-mode fa
397
+
398
+ # You can disable the enhancement model if the GPU memory is insufficient.
399
+ # The enhancement will be unavailable until you restart the app without the `--no-enhance` flag.
400
+ python app/hydit_app.py --no-enhance
401
+
402
+ # Start with English UI
403
+ python app/hydit_app.py --lang en
404
+
405
+ # Start a multi-turn T2I generation UI.
406
+ # If your GPU memory is less than 32GB, use '--load-4bit' to enable 4-bit quantization, which requires at least 22GB of memory.
407
+ python app/multiTurnT2I_app.py
408
+ ```
409
+ Then the demo can be accessed through http://0.0.0.0:443. It should be noted that the 0.0.0.0 here needs to be X.X.X.X with your server IP.
410
+
411
+ ### Using ๐Ÿค— Diffusers
412
+
413
+ Please install PyTorch version 2.0 or higher in advance to satisfy the requirements of the specified version of the diffusers library.
414
+
415
+ Install ๐Ÿค— diffusers, ensuring that the version is at least 0.28.1:
416
+
417
+ ```shell
418
+ pip install git+https://github.com/huggingface/diffusers.git
419
+ ```
420
+ or
421
+ ```shell
422
+ pip install diffusers
423
+ ```
424
+
425
+ You can generate images with both Chinese and English prompts using the following Python script:
426
+ ```py
427
+ import torch
428
+ from diffusers import HunyuanDiTPipeline
429
+
430
+ pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16)
431
+ pipe.to("cuda")
432
+
433
+ # You may also use English prompt as HunyuanDiT supports both English and Chinese
434
+ # prompt = "An astronaut riding a horse"
435
+ prompt = "ไธ€ไธชๅฎ‡่ˆชๅ‘˜ๅœจ้ช‘้ฉฌ"
436
+ image = pipe(prompt).images[0]
437
+ ```
438
+ You can use our distilled model to generate images even faster:
439
+
440
+ ```py
441
+ import torch
442
+ from diffusers import HunyuanDiTPipeline
443
+
444
+ pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-Diffusers-Distilled", torch_dtype=torch.float16)
445
+ pipe.to("cuda")
446
+
447
+ # You may also use English prompt as HunyuanDiT supports both English and Chinese
448
+ # prompt = "An astronaut riding a horse"
449
+ prompt = "ไธ€ไธชๅฎ‡่ˆชๅ‘˜ๅœจ้ช‘้ฉฌ"
450
+ image = pipe(prompt, num_inference_steps=25).images[0]
451
+ ```
452
+ More details can be found in [HunyuanDiT-Diffusers-Distilled](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-Diffusers-Distilled)
453
+
454
+ ### Using Command Line
455
+
456
+ We provide several commands to quick start:
457
+
458
+ ```shell
459
+ # Prompt Enhancement + Text-to-Image. Torch mode
460
+ python sample_t2i.py --prompt "ๆธ”่ˆŸๅ”ฑๆ™š"
461
+
462
+ # Only Text-to-Image. Torch mode
463
+ python sample_t2i.py --prompt "ๆธ”่ˆŸๅ”ฑๆ™š" --no-enhance
464
+
465
+ # Only Text-to-Image. Flash Attention mode
466
+ python sample_t2i.py --infer-mode fa --prompt "ๆธ”่ˆŸๅ”ฑๆ™š"
467
+
468
+ # Generate an image with other image sizes.
469
+ python sample_t2i.py --prompt "ๆธ”่ˆŸๅ”ฑๆ™š" --image-size 1280 768
470
+
471
+ # Prompt Enhancement + Text-to-Image. DialogGen loads with 4-bit quantization, but it may loss performance.
472
+ python sample_t2i.py --prompt "ๆธ”่ˆŸๅ”ฑๆ™š" --load-4bit
473
+
474
+ ```
475
+
476
+ More example prompts can be found in [example_prompts.txt](example_prompts.txt)
477
+
478
+ ### More Configurations
479
+
480
+ We list some more useful configurations for easy usage:
481
+
482
+ | Argument | Default | Description |
483
+ |:---------------:|:---------:|:---------------------------------------------------:|
484
+ | `--prompt` | None | The text prompt for image generation |
485
+ | `--image-size` | 1024 1024 | The size of the generated image |
486
+ | `--seed` | 42 | The random seed for generating images |
487
+ | `--infer-steps` | 100 | The number of steps for sampling |
488
+ | `--negative` | - | The negative prompt for image generation |
489
+ | `--infer-mode` | torch | The inference mode (torch, fa, or trt) |
490
+ | `--sampler` | ddpm | The diffusion sampler (ddpm, ddim, or dpmms) |
491
+ | `--no-enhance` | False | Disable the prompt enhancement model |
492
+ | `--model-root` | ckpts | The root directory of the model checkpoints |
493
+ | `--load-key` | ema | Load the student model or EMA model (ema or module) |
494
+ | `--load-4bit` | Fasle | Load DialogGen model with 4bit quantization |
495
+
496
+ ### Using ComfyUI
497
+
498
+ We provide several commands to quick start:
499
+
500
+ ```shell
501
+ # Download comfyui code
502
+ git clone https://github.com/comfyanonymous/ComfyUI.git
503
+
504
+ # Install torch, torchvision, torchaudio
505
+ pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu117
506
+
507
+ # Install Comfyui essential python package
508
+ cd ComfyUI
509
+ pip install -r requirements.txt
510
+
511
+ # ComfyUI has been successfully installed!
512
+
513
+ # Download model weight as before or link the existing model folder to ComfyUI.
514
+ python -m pip install "huggingface_hub[cli]"
515
+ mkdir models/hunyuan
516
+ huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./models/hunyuan/ckpts
517
+
518
+ # Move to the ComfyUI custom_nodes folder and copy comfyui-hydit folder from HunyuanDiT Repo.
519
+ cd custom_nodes
520
+ cp -r ${HunyuanDiT}/comfyui-hydit ./
521
+ cd comfyui-hydit
522
+
523
+ # Install some essential python Package.
524
+ pip install -r requirements.txt
525
+
526
+ # Our tool has been successfully installed!
527
+
528
+ # Go to ComfyUI main folder
529
+ cd ../..
530
+ # Run the ComfyUI Lauch command
531
+ python main.py --listen --port 80
532
+
533
+ # Running ComfyUI successfully!
534
+ ```
535
+ More details can be found in [ComfyUI README](comfyui-hydit/README.md)
536
+
537
+ ## ๐Ÿš€ Acceleration (for Linux)
538
+
539
+ - We provide TensorRT version of HunyuanDiT for inference acceleration (faster than flash attention).
540
+ See [Tencent-Hunyuan/TensorRT-libs](https://huggingface.co/Tencent-Hunyuan/TensorRT-libs) for more details.
541
+
542
+ - We provide Distillation version of HunyuanDiT for inference acceleration.
543
+ See [Tencent-Hunyuan/Distillation](https://huggingface.co/Tencent-Hunyuan/Distillation) for more details.
544
+
545
+ ## ๐Ÿ”— BibTeX
546
+ If you find [Hunyuan-DiT](https://arxiv.org/abs/2405.08748) or [DialogGen](https://arxiv.org/abs/2403.08857) useful for your research and applications, please cite using this BibTeX:
547
+
548
+ ```BibTeX
549
+ @misc{li2024hunyuandit,
550
+ title={Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding},
551
+ author={Zhimin Li and Jianwei Zhang and Qin Lin and Jiangfeng Xiong and Yanxin Long and Xinchi Deng and Yingfang Zhang and Xingchao Liu and Minbin Huang and Zedong Xiao and Dayou Chen and Jiajun He and Jiahao Li and Wenyue Li and Chen Zhang and Rongwei Quan and Jianxiang Lu and Jiabin Huang and Xiaoyan Yuan and Xiaoxiao Zheng and Yixuan Li and Jihong Zhang and Chao Zhang and Meng Chen and Jie Liu and Zheng Fang and Weiyan Wang and Jinbao Xue and Yangyu Tao and Jianchen Zhu and Kai Liu and Sihuan Lin and Yifu Sun and Yun Li and Dongdong Wang and Mingtao Chen and Zhichao Hu and Xiao Xiao and Yan Chen and Yuhong Liu and Wei Liu and Di Wang and Yong Yang and Jie Jiang and Qinglin Lu},
552
+ year={2024},
553
+ eprint={2405.08748},
554
+ archivePrefix={arXiv},
555
+ primaryClass={cs.CV}
556
+ }
557
+
558
+ @article{huang2024dialoggen,
559
+ title={DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation},
560
+ author={Huang, Minbin and Long, Yanxin and Deng, Xinchi and Chu, Ruihang and Xiong, Jiangfeng and Liang, Xiaodan and Cheng, Hong and Lu, Qinglin and Liu, Wei},
561
+ journal={arXiv preprint arXiv:2403.08857},
562
+ year={2024}
563
+ }
564
+ ```
565
+
566
+ ## Start History
567
+
568
+ <a href="https://star-history.com/#Tencent/HunyuanDiT&Date">
569
+ <picture>
570
+ <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Tencent/HunyuanDiT&type=Date&theme=dark" />
571
+ <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Tencent/HunyuanDiT&type=Date" />
572
+ <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Tencent/HunyuanDiT&type=Date" />
573
+ </picture>
574
+ </a>