Upload folder using huggingface_hub
Browse files- README.md +162 -0
- clip_img_encoder.pt +3 -0
- ipa.pt +3 -0
README.md
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Using HunyuanDiT IP-Adapter
|
2 |
+
|
3 |
+
|
4 |
+
### Instructions
|
5 |
+
|
6 |
+
The dependencies and installation are basically the same as the base model, and we use the module weights for training.
|
7 |
+
Download the model using the following commands:
|
8 |
+
|
9 |
+
```bash
|
10 |
+
cd HunyuanDiT
|
11 |
+
# Use the huggingface-cli tool to download the model.
|
12 |
+
# We recommend using module weights as the base model for IP-Adapter inference, as our provided pretrained weights are trained on them.
|
13 |
+
huggingface-cli download Tencent-Hunyuan/IP-Adapter/ipa.pt --local-dir ./ckpts/t2i/model
|
14 |
+
huggingface-cli download Tencent-Hunyuan/IP-Adapter/clip_img_encoder.pt --local-dir ./ckpts/t2i/model/clip_img_encoder
|
15 |
+
|
16 |
+
# Quick start
|
17 |
+
python3 sample_ipadapter.py --infer-mode fa --ref-image-path ipadapter/input/tiger.png --i-scale 1.0 --prompt 一只老虎在海洋中游泳,背景是海洋。构图方式是居中构图,呈现了动漫风格和文化,营造了平静的氛围。 --infer-steps 100 --is-ipa True --load-key module
|
18 |
+
```
|
19 |
+
|
20 |
+
Examples of ref input and IP-Adapter results are as follows:
|
21 |
+
<table>
|
22 |
+
<tr>
|
23 |
+
<td colspan="3" align="center">Ref Input</td>
|
24 |
+
</tr>
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
<tr>
|
31 |
+
<td align="center"><img src="asset/input/tiger.png" alt="Image 0" width="200"/></td>
|
32 |
+
<td align="center"><img src="asset/input/beauty.png" alt="Image 1" width="200"/></td>
|
33 |
+
<td align="center"><img src="asset/input/xunyicao.png" alt="Image 2" width="200"/></td>
|
34 |
+
|
35 |
+
</tr>
|
36 |
+
|
37 |
+
<tr>
|
38 |
+
<td colspan="3" align="center">IP-Adapter Output</td>
|
39 |
+
</tr>
|
40 |
+
|
41 |
+
<tr>
|
42 |
+
<td align="center">一只老虎在奔跑。<br>(A tiger running.) </td>
|
43 |
+
<td align="center">一个卡通美女,抱着一只小猪。<br>(A cartoon beauty holding a little pig.) </td>
|
44 |
+
<td align="center">一片紫色薰衣草地。<br>(A purple lavender field.) </td>
|
45 |
+
</tr>
|
46 |
+
|
47 |
+
<tr>
|
48 |
+
<td align="center"><img src="asset/output/tiger_run.png" alt="Image 3" width="200"/></td>
|
49 |
+
<td align="center"><img src="asset/output/beauty_pig.png" alt="Image 4" width="200"/></td>
|
50 |
+
<td align="center"><img src="asset/output/xunyicao_res.png" alt="Image 5" width="200"/></td>
|
51 |
+
</tr>
|
52 |
+
|
53 |
+
<tr>
|
54 |
+
<td align="center">一只老虎在看书。<br>(A tiger is reading a book.) </td>
|
55 |
+
<td align="center">一个卡通美女,穿着绿色衣服。<br>(A cartoon beauty wearing green clothes.) </td>
|
56 |
+
<td align="center">一片紫色薰衣草地,有一只可爱的小狗。<br>(A purple lavender field with a cute puppy.) </td>
|
57 |
+
</tr>
|
58 |
+
|
59 |
+
<tr>
|
60 |
+
<td align="center"><img src="asset/output/tiger_book.png" alt="Image 3" width="200"/></td>
|
61 |
+
<td align="center"><img src="asset/output/beauty_green_cloth.png" alt="Image 4" width="200"/></td>
|
62 |
+
<td align="center"><img src="asset/output/xunyicao_dog.png" alt="Image 5" width="200"/></td>
|
63 |
+
</tr>
|
64 |
+
|
65 |
+
<tr>
|
66 |
+
<td align="center">一只老虎在咆哮。<br>(A tiger is roaring.) </td>
|
67 |
+
<td align="center">一个卡通美女,戴着墨镜。<br>(A cartoon beauty wearing sunglasses.) </td>
|
68 |
+
<td align="center">水墨风格,一片紫色薰衣草地。<br>(Ink style. A purple lavender field.) </td>
|
69 |
+
</tr>
|
70 |
+
<tr>
|
71 |
+
<td align="center"><img src="asset/output/tiger_roar.png" alt="Image 3" width="200"/></td>
|
72 |
+
<td align="center"><img src="asset/output/beauty_glass.png" alt="Image 4" width="200"/></td>
|
73 |
+
<td align="center"><img src="asset/output/xunyicao_style.png" alt="Image 5" width="200"/></td>
|
74 |
+
</tr>
|
75 |
+
|
76 |
+
|
77 |
+
</table>
|
78 |
+
|
79 |
+
|
80 |
+
### Training
|
81 |
+
|
82 |
+
We provide base model weights for IP-Adapter training, you can use `module` weights for IP-Adapter training.
|
83 |
+
|
84 |
+
Here is an example, we load the `module` weights into the main model and conduct IP-Adapter training.
|
85 |
+
|
86 |
+
If apply multiple resolution training, you need to add the `--multireso` and `--reso-step 64` parameter.
|
87 |
+
|
88 |
+
```bash
|
89 |
+
task_flag="IP_Adapter" # the task flag is used to identify folders. # checkpoint root for resume
|
90 |
+
index_file=path/to/your/index_file
|
91 |
+
results_dir=./log_EXP # save root for results
|
92 |
+
batch_size=1 # training batch size
|
93 |
+
image_size=1024 # training image resolution
|
94 |
+
grad_accu_steps=1 # gradient accumulation
|
95 |
+
warmup_num_steps=0 # warm-up steps
|
96 |
+
lr=0.0001 # learning rate
|
97 |
+
ckpt_every=10 # create a ckpt every a few steps.
|
98 |
+
ckpt_latest_every=10000 # create a ckpt named `latest.pt` every a few steps.
|
99 |
+
ckpt_every_n_epoch=2 # create a ckpt every a few epochs.
|
100 |
+
epochs=8 # total training epochs
|
101 |
+
|
102 |
+
PYTHONPATH=. \
|
103 |
+
sh $(dirname "$0")/run_g_ipadapter.sh \
|
104 |
+
--task-flag ${task_flag} \
|
105 |
+
--noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.018 \
|
106 |
+
--predict-type v_prediction \
|
107 |
+
--multireso \
|
108 |
+
--reso-step 64 \
|
109 |
+
--uncond-p 0.22 \
|
110 |
+
--uncond-p-t5 0.22\
|
111 |
+
--uncond-p-img 0.05\
|
112 |
+
--index-file ${index_file} \
|
113 |
+
--random-flip \
|
114 |
+
--lr ${lr} \
|
115 |
+
--batch-size ${batch_size} \
|
116 |
+
--image-size ${image_size} \
|
117 |
+
--global-seed 999 \
|
118 |
+
--grad-accu-steps ${grad_accu_steps} \
|
119 |
+
--warmup-num-steps ${warmup_num_steps} \
|
120 |
+
--use-flash-attn \
|
121 |
+
--use-fp16 \
|
122 |
+
--extra-fp16 \
|
123 |
+
--results-dir ${results_dir} \
|
124 |
+
--resume\
|
125 |
+
--resume-module-root ckpts/t2i/model/pytorch_model_module.pt \
|
126 |
+
--epochs ${epochs} \
|
127 |
+
--ckpt-every ${ckpt_every} \
|
128 |
+
--ckpt-latest-every ${ckpt_latest_every} \
|
129 |
+
--ckpt-every-n-epoch ${ckpt_every_n_epoch} \
|
130 |
+
--log-every 10 \
|
131 |
+
--deepspeed \
|
132 |
+
--use-zero-stage 2 \
|
133 |
+
--gradient-checkpointing \
|
134 |
+
--no-strict \
|
135 |
+
--training-parts ipadapter \
|
136 |
+
--is-ipa True \
|
137 |
+
--resume-ipa True \
|
138 |
+
--resume-ipa-root ckpts/t2i/model/ipa.pt \
|
139 |
+
"$@"
|
140 |
+
|
141 |
+
```
|
142 |
+
|
143 |
+
Recommended parameter settings
|
144 |
+
|
145 |
+
| Parameter | Description | Recommended Parameter Value | Note|
|
146 |
+
|:---------------:|:---------:|:---------------------------------------------------:|:--:|
|
147 |
+
| `--batch-size` | Training batch size | 1 | Depends on GPU memory|
|
148 |
+
| `--grad-accu-steps` | Size of gradient accumulation | 2 | - |
|
149 |
+
| `--lr` | Learning rate | 0.0001 | - |
|
150 |
+
| `--training-parts` | be trained parameters when training IP-Adapter | ipadapter | - |
|
151 |
+
| `--is-ipa` | training IP-Adapter or not | True | - |
|
152 |
+
| `--resume-ipa-root` | resume ipa model or not when training | ipa model path | - |
|
153 |
+
|
154 |
+
|
155 |
+
### Inference
|
156 |
+
Use the following command line for inference.
|
157 |
+
|
158 |
+
a. Use the parameter float i-scale to specify the weight of IP-Adapter reference image. The bigger parameter indicates more relativity to reference image.
|
159 |
+
```bash
|
160 |
+
python3 sample_ipadapter.py --infer-mode fa --ref-image-path ipadapter/input/beach.png --i-scale 1.0 --prompt 一只老虎在海洋中游泳,背景是海洋。构图方式是居中构图,呈现了动漫风格和文化,营造了平静的氛围。 --infer-steps 100 --is-ipa True --load-key module
|
161 |
+
```
|
162 |
+
|
clip_img_encoder.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34b1363abb93bffd1a7d1924054da7c8a5d57800bde67852890d9da06e6014c6
|
3 |
+
size 6753378451
|
ipa.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d4b3ced3b9e648790f19591ee9377de430db8d0c8ee1675f14d55beaa248ee6
|
3 |
+
size 247745311
|