--- license: apache-2.0 base_model: stabilityai/stable-diffusion-xl-base-1.0 tags: - art - t2i-adapter - stable-diffusion - image-to-image --- # T2I-Adapter-SDXL - Lineart T2I Adapter is a network providing additional conditioning to stable diffusion. Each t2i checkpoint takes a different type of conditioning as input and is used with a specific base stable diffusion checkpoint. This checkpoint provides conditioning on canny for the StableDiffusionXL checkpoint. ## Model Details - **Developed by:** T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** Apache 2.0 - **Resources for more information:** [GitHub Repository](https://github.com/TencentARC/T2I-Adapter), [Paper](https://arxiv.org/abs/2302.08453). - **Cite as:** @misc{ title={T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models}, author={Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie}, year={2023}, eprint={2302.08453}, archivePrefix={arXiv}, primaryClass={cs.CV} } ### Checkpoints | Model Name | Control Image Overview| Control Image Example | Generated Image Example | |---|---|---|---| |[Adapter/t2iadapter_canny_sdxlv1](https://huggingface.co/Adapter/t2iadapter_canny_sdxlv1)
*Trained with canny edge detection* | A monochrome image with white edges on a black background.||| |[Adapter/t2iadapter_sketch_sdxlv1](https://huggingface.co/Adapter/t2iadapter_sketch_sdxlv1)
*Trained with [PidiNet](https://github.com/zhuoinoulu/pidinet) edge detection* | A hand-drawn monochrome image with white outlines on a black background.||| |[Adapter/t2iadapter_depth_sdxlv1](https://huggingface.co/Adapter/t2iadapter_depth_sdxlv1)
*Trained with Midas depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.||| |[Adapter/t2iadapter_openpose_sdxlv1](https://huggingface.co/Adapter/t2iadapter_openpose_sdxlv1)
*Trained with OpenPose bone image* | A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.||| ## Example To get started, first install the required dependencies: ```bash pip install git+https://github.com/huggingface/diffusers.git@t2iadapterxl # for now pip install git+https://github.com/patrickvonplaten/controlnet_aux.git # for conditioning models and detectors pip install transformers accelerate safetensors ``` 1. Images are first downloaded into the appropriate *control image* format. 2. The *control image* and *prompt* are passed to the [`StableDiffusionXLAdapterPipeline`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py#L125). Let's have a look at a simple example using the [Canny Adapter](https://huggingface.co/Adapter/t2iadapter_canny_sdxlv1). ```py from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteScheduler from diffusers.utils import load_image, make_image_grid from controlnet_aux.lineart import LineartDetector # load adapter adapter = T2IAdapter.from_pretrained( "Adapter/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16, varient="fp16" ).to("cuda") # load euler_a scheduler model_id = 'stabilityai/stable-diffusion-xl-base-1.0' euler_a = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") vae= AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ) pipe = StableDiffusionXLAdapterPipeline.from_pretrained( model_id, vae=vae, adapter=adapter, scheduler=euler_a, torch_dtype=torch.float16, variant="fp16", ).to("cuda") pipe.enable_xformers_memory_efficient_attention() # Load PidiNet line_detector = LineartDetector.from_pretrained("lllyasviel/Annotators").to("cuda") url = "https://cdn.sortiraparis.com/images/80/77381/729517-oppenheimer-le-prochain-film-de-christopher-nolan-pour-2023-la-premiere-photo.jpg" image = load_image(url) image = line_detector( image.resize((384, 384)), detect_resolution=384, image_resolution=1024 ).resize((1024, 1024)) prompt = "cinematic still, a man, head shot" negative_prompt = "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured" gen_images = pipe( prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=30, adapter_conditioning_scale=1, cond_tau=1 ).images gen_images[0] ```