Commit
•
fa8e2c2
1
Parent(s):
18905a7
update model card (#1)
Browse files- update model card (0533d9fa2852caae9ed823f04e5a1b06ab216f06)
- fix title (3e2bf94cf2b37a81820208b561dc2f415d816d1f)
Co-authored-by: Will Berman <[email protected]>
- README.md +264 -1
- images/seg_image_out.png +0 -0
- images/seg_input.jpeg +0 -0
- images/segment_image.png +0 -0
README.md
CHANGED
@@ -1,3 +1,266 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: runwayml/stable-diffusion-v1-5
|
4 |
+
tags:
|
5 |
+
- art
|
6 |
+
- t2i-adapter
|
7 |
+
- controlnet
|
8 |
+
- stable-diffusion
|
9 |
+
- image-to-image
|
10 |
---
|
11 |
+
|
12 |
+
# T2I Adapter - Segment
|
13 |
+
|
14 |
+
T2I Adapter is a network providing additional conditioning to stable diffusion. Each t2i checkpoint takes a different type of conditioning as input and is used with a specific base stable diffusion checkpoint.
|
15 |
+
|
16 |
+
This checkpoint provides conditioning on semantic segmentation for the stable diffusion 1.4 checkpoint.
|
17 |
+
|
18 |
+
## Model Details
|
19 |
+
- **Developed by:** T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models
|
20 |
+
- **Model type:** Diffusion-based text-to-image generation model
|
21 |
+
- **Language(s):** English
|
22 |
+
- **License:** Apache 2.0
|
23 |
+
- **Resources for more information:** [GitHub Repository](https://github.com/TencentARC/T2I-Adapter), [Paper](https://arxiv.org/abs/2302.08453).
|
24 |
+
- **Cite as:**
|
25 |
+
|
26 |
+
@misc{
|
27 |
+
title={T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models},
|
28 |
+
author={Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie},
|
29 |
+
year={2023},
|
30 |
+
eprint={2302.08453},
|
31 |
+
archivePrefix={arXiv},
|
32 |
+
primaryClass={cs.CV}
|
33 |
+
}
|
34 |
+
|
35 |
+
### Checkpoints
|
36 |
+
|
37 |
+
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|
38 |
+
|---|---|---|---|
|
39 |
+
|[TencentARC/t2iadapter_color_sd14v1](https://huggingface.co/TencentARC/t2iadapter_color_sd14v1)<br/> *Trained with spatial color palette* | A image with 8x8 color palette.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"/></a>|
|
40 |
+
|[TencentARC/t2iadapter_canny_sd14v1](https://huggingface.co/TencentARC/t2iadapter_canny_sd14v1)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"/></a>|
|
41 |
+
|[TencentARC/t2iadapter_sketch_sd14v1](https://huggingface.co/TencentARC/t2iadapter_sketch_sd14v1)<br/> *Trained with [PidiNet](https://github.com/zhuoinoulu/pidinet) edge detection* | A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"/></a>|
|
42 |
+
|[TencentARC/t2iadapter_depth_sd14v1](https://huggingface.co/TencentARC/t2iadapter_depth_sd14v1)<br/> *Trained with Midas depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"/></a>|
|
43 |
+
|[TencentARC/t2iadapter_openpose_sd14v1](https://huggingface.co/TencentARC/t2iadapter_openpose_sd14v1)<br/> *Trained with OpenPose bone image* | A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_output.png"/></a>|
|
44 |
+
|[TencentARC/t2iadapter_keypose_sd14v1](https://huggingface.co/TencentARC/t2iadapter_keypose_sd14v1)<br/> *Trained with mmpose skeleton image* | A [mmpose skeleton](https://github.com/open-mmlab/mmpose) image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_output.png"/></a>|
|
45 |
+
|[TencentARC/t2iadapter_seg_sd14v1](https://huggingface.co/TencentARC/t2iadapter_seg_sd14v1)<br/>*Trained with semantic segmentation* | An [custom](https://github.com/TencentARC/T2I-Adapter/discussions/25) segmentation protocol image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_output.png"/></a> |
|
46 |
+
|[TencentARC/t2iadapter_canny_sd15v2](https://huggingface.co/TencentARC/t2iadapter_canny_sd15v2)||
|
47 |
+
|[TencentARC/t2iadapter_depth_sd15v2](https://huggingface.co/TencentARC/t2iadapter_depth_sd15v2)||
|
48 |
+
|[TencentARC/t2iadapter_sketch_sd15v2](https://huggingface.co/TencentARC/t2iadapter_sketch_sd15v2)||
|
49 |
+
|[TencentARC/t2iadapter_zoedepth_sd15v1](https://huggingface.co/TencentARC/t2iadapter_zoedepth_sd15v1)||
|
50 |
+
|
51 |
+
## Example
|
52 |
+
|
53 |
+
1. Dependencies
|
54 |
+
|
55 |
+
```sh
|
56 |
+
pip install diffusers transformers
|
57 |
+
```
|
58 |
+
|
59 |
+
2. Run code:
|
60 |
+
|
61 |
+
```python
|
62 |
+
import torch
|
63 |
+
from PIL import Image
|
64 |
+
import numpy as np
|
65 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
66 |
+
|
67 |
+
from diffusers import (
|
68 |
+
T2IAdapter,
|
69 |
+
StableDiffusionAdapterPipeline
|
70 |
+
)
|
71 |
+
|
72 |
+
ada_palette = np.asarray([
|
73 |
+
[0, 0, 0],
|
74 |
+
[120, 120, 120],
|
75 |
+
[180, 120, 120],
|
76 |
+
[6, 230, 230],
|
77 |
+
[80, 50, 50],
|
78 |
+
[4, 200, 3],
|
79 |
+
[120, 120, 80],
|
80 |
+
[140, 140, 140],
|
81 |
+
[204, 5, 255],
|
82 |
+
[230, 230, 230],
|
83 |
+
[4, 250, 7],
|
84 |
+
[224, 5, 255],
|
85 |
+
[235, 255, 7],
|
86 |
+
[150, 5, 61],
|
87 |
+
[120, 120, 70],
|
88 |
+
[8, 255, 51],
|
89 |
+
[255, 6, 82],
|
90 |
+
[143, 255, 140],
|
91 |
+
[204, 255, 4],
|
92 |
+
[255, 51, 7],
|
93 |
+
[204, 70, 3],
|
94 |
+
[0, 102, 200],
|
95 |
+
[61, 230, 250],
|
96 |
+
[255, 6, 51],
|
97 |
+
[11, 102, 255],
|
98 |
+
[255, 7, 71],
|
99 |
+
[255, 9, 224],
|
100 |
+
[9, 7, 230],
|
101 |
+
[220, 220, 220],
|
102 |
+
[255, 9, 92],
|
103 |
+
[112, 9, 255],
|
104 |
+
[8, 255, 214],
|
105 |
+
[7, 255, 224],
|
106 |
+
[255, 184, 6],
|
107 |
+
[10, 255, 71],
|
108 |
+
[255, 41, 10],
|
109 |
+
[7, 255, 255],
|
110 |
+
[224, 255, 8],
|
111 |
+
[102, 8, 255],
|
112 |
+
[255, 61, 6],
|
113 |
+
[255, 194, 7],
|
114 |
+
[255, 122, 8],
|
115 |
+
[0, 255, 20],
|
116 |
+
[255, 8, 41],
|
117 |
+
[255, 5, 153],
|
118 |
+
[6, 51, 255],
|
119 |
+
[235, 12, 255],
|
120 |
+
[160, 150, 20],
|
121 |
+
[0, 163, 255],
|
122 |
+
[140, 140, 140],
|
123 |
+
[250, 10, 15],
|
124 |
+
[20, 255, 0],
|
125 |
+
[31, 255, 0],
|
126 |
+
[255, 31, 0],
|
127 |
+
[255, 224, 0],
|
128 |
+
[153, 255, 0],
|
129 |
+
[0, 0, 255],
|
130 |
+
[255, 71, 0],
|
131 |
+
[0, 235, 255],
|
132 |
+
[0, 173, 255],
|
133 |
+
[31, 0, 255],
|
134 |
+
[11, 200, 200],
|
135 |
+
[255, 82, 0],
|
136 |
+
[0, 255, 245],
|
137 |
+
[0, 61, 255],
|
138 |
+
[0, 255, 112],
|
139 |
+
[0, 255, 133],
|
140 |
+
[255, 0, 0],
|
141 |
+
[255, 163, 0],
|
142 |
+
[255, 102, 0],
|
143 |
+
[194, 255, 0],
|
144 |
+
[0, 143, 255],
|
145 |
+
[51, 255, 0],
|
146 |
+
[0, 82, 255],
|
147 |
+
[0, 255, 41],
|
148 |
+
[0, 255, 173],
|
149 |
+
[10, 0, 255],
|
150 |
+
[173, 255, 0],
|
151 |
+
[0, 255, 153],
|
152 |
+
[255, 92, 0],
|
153 |
+
[255, 0, 255],
|
154 |
+
[255, 0, 245],
|
155 |
+
[255, 0, 102],
|
156 |
+
[255, 173, 0],
|
157 |
+
[255, 0, 20],
|
158 |
+
[255, 184, 184],
|
159 |
+
[0, 31, 255],
|
160 |
+
[0, 255, 61],
|
161 |
+
[0, 71, 255],
|
162 |
+
[255, 0, 204],
|
163 |
+
[0, 255, 194],
|
164 |
+
[0, 255, 82],
|
165 |
+
[0, 10, 255],
|
166 |
+
[0, 112, 255],
|
167 |
+
[51, 0, 255],
|
168 |
+
[0, 194, 255],
|
169 |
+
[0, 122, 255],
|
170 |
+
[0, 255, 163],
|
171 |
+
[255, 153, 0],
|
172 |
+
[0, 255, 10],
|
173 |
+
[255, 112, 0],
|
174 |
+
[143, 255, 0],
|
175 |
+
[82, 0, 255],
|
176 |
+
[163, 255, 0],
|
177 |
+
[255, 235, 0],
|
178 |
+
[8, 184, 170],
|
179 |
+
[133, 0, 255],
|
180 |
+
[0, 255, 92],
|
181 |
+
[184, 0, 255],
|
182 |
+
[255, 0, 31],
|
183 |
+
[0, 184, 255],
|
184 |
+
[0, 214, 255],
|
185 |
+
[255, 0, 112],
|
186 |
+
[92, 255, 0],
|
187 |
+
[0, 224, 255],
|
188 |
+
[112, 224, 255],
|
189 |
+
[70, 184, 160],
|
190 |
+
[163, 0, 255],
|
191 |
+
[153, 0, 255],
|
192 |
+
[71, 255, 0],
|
193 |
+
[255, 0, 163],
|
194 |
+
[255, 204, 0],
|
195 |
+
[255, 0, 143],
|
196 |
+
[0, 255, 235],
|
197 |
+
[133, 255, 0],
|
198 |
+
[255, 0, 235],
|
199 |
+
[245, 0, 255],
|
200 |
+
[255, 0, 122],
|
201 |
+
[255, 245, 0],
|
202 |
+
[10, 190, 212],
|
203 |
+
[214, 255, 0],
|
204 |
+
[0, 204, 255],
|
205 |
+
[20, 0, 255],
|
206 |
+
[255, 255, 0],
|
207 |
+
[0, 153, 255],
|
208 |
+
[0, 41, 255],
|
209 |
+
[0, 255, 204],
|
210 |
+
[41, 0, 255],
|
211 |
+
[41, 255, 0],
|
212 |
+
[173, 0, 255],
|
213 |
+
[0, 245, 255],
|
214 |
+
[71, 0, 255],
|
215 |
+
[122, 0, 255],
|
216 |
+
[0, 255, 184],
|
217 |
+
[0, 92, 255],
|
218 |
+
[184, 255, 0],
|
219 |
+
[0, 133, 255],
|
220 |
+
[255, 214, 0],
|
221 |
+
[25, 194, 194],
|
222 |
+
[102, 255, 0],
|
223 |
+
[92, 0, 255],
|
224 |
+
])
|
225 |
+
|
226 |
+
|
227 |
+
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
228 |
+
image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
229 |
+
|
230 |
+
checkpoint = "lllyasviel/control_v11p_sd15_seg"
|
231 |
+
|
232 |
+
image = Image.open('./images/seg_input.jpeg')
|
233 |
+
|
234 |
+
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
235 |
+
with torch.no_grad():
|
236 |
+
outputs = image_segmentor(pixel_values)
|
237 |
+
|
238 |
+
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
239 |
+
|
240 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
241 |
+
|
242 |
+
for label, color in enumerate(ada_palette):
|
243 |
+
color_seg[seg == label, :] = color
|
244 |
+
|
245 |
+
color_seg = color_seg.astype(np.uint8)
|
246 |
+
control_image = Image.fromarray(color_seg)
|
247 |
+
|
248 |
+
control_image.save("./images/segment_image.png")
|
249 |
+
|
250 |
+
adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_seg_sd14v1", torch_dtype=torch.float16)
|
251 |
+
pipe = StableDiffusionAdapterPipeline.from_pretrained(
|
252 |
+
"CompVis/stable-diffusion-v1-4", adapter=adapter, safety_checker=None, torch_dtype=torch.float16, variant="fp16"
|
253 |
+
)
|
254 |
+
|
255 |
+
pipe.to('cuda')
|
256 |
+
|
257 |
+
generator = torch.Generator().manual_seed(0)
|
258 |
+
|
259 |
+
sketch_image_out = pipe(prompt="motorcycles driving", image=control_image, generator=generator).images[0]
|
260 |
+
|
261 |
+
sketch_image_out.save('./images/seg_image_out.png')
|
262 |
+
```
|
263 |
+
|
264 |
+
![seg_input](./images/seg_input.jpeg)
|
265 |
+
![segment_image](./images/segment_image.png)
|
266 |
+
![seg_image_out](./images/seg_image_out.png)
|
images/seg_image_out.png
ADDED
images/seg_input.jpeg
ADDED
images/segment_image.png
ADDED