Xintao williamberman commited on
Commit
2959e4d
1 Parent(s): c7f4129
README.md CHANGED
@@ -1,3 +1,145 @@
1
  ---
2
- duplicated_from: diffusers/t2iadapter_zoedepth_sd15v1
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: runwayml/stable-diffusion-v1-5
4
+ tags:
5
+ - art
6
+ - t2i-adapter
7
+ - controlnet
8
+ - stable-diffusion
9
+ - image-to-image
10
  ---
11
+
12
+ # T2I Adapter - Zoedepth
13
+
14
+ T2I Adapter is a network providing additional conditioning to stable diffusion. Each t2i checkpoint takes a different type of conditioning as input and is used with a specific base stable diffusion checkpoint.
15
+
16
+ This checkpoint provides conditioning on zoedepth depth estimation for the stable diffusion 1.5 checkpoint.
17
+
18
+ ## Model Details
19
+ - **Developed by:** T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models
20
+ - **Model type:** Diffusion-based text-to-image generation model
21
+ - **Language(s):** English
22
+ - **License:** Apache 2.0
23
+ - **Resources for more information:** [GitHub Repository](https://github.com/TencentARC/T2I-Adapter), [Paper](https://arxiv.org/abs/2302.08453).
24
+ - **Cite as:**
25
+
26
+ @misc{
27
+ title={T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models},
28
+ author={Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie},
29
+ year={2023},
30
+ eprint={2302.08453},
31
+ archivePrefix={arXiv},
32
+ primaryClass={cs.CV}
33
+ }
34
+
35
+ ### Checkpoints
36
+
37
+ | Model Name | Control Image Overview| Control Image Example | Generated Image Example |
38
+ |---|---|---|---|
39
+ |[TencentARC/t2iadapter_color_sd14v1](https://huggingface.co/TencentARC/t2iadapter_color_sd14v1)<br/> *Trained with spatial color palette* | A image with 8x8 color palette.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"/></a>|
40
+ |[TencentARC/t2iadapter_canny_sd14v1](https://huggingface.co/TencentARC/t2iadapter_canny_sd14v1)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"/></a>|
41
+ |[TencentARC/t2iadapter_sketch_sd14v1](https://huggingface.co/TencentARC/t2iadapter_sketch_sd14v1)<br/> *Trained with [PidiNet](https://github.com/zhuoinoulu/pidinet) edge detection* | A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"/></a>|
42
+ |[TencentARC/t2iadapter_depth_sd14v1](https://huggingface.co/TencentARC/t2iadapter_depth_sd14v1)<br/> *Trained with Midas depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"/></a>|
43
+ |[TencentARC/t2iadapter_openpose_sd14v1](https://huggingface.co/TencentARC/t2iadapter_openpose_sd14v1)<br/> *Trained with OpenPose bone image* | A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_output.png"/></a>|
44
+ |[TencentARC/t2iadapter_keypose_sd14v1](https://huggingface.co/TencentARC/t2iadapter_keypose_sd14v1)<br/> *Trained with mmpose skeleton image* | A [mmpose skeleton](https://github.com/open-mmlab/mmpose) image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_output.png"/></a>|
45
+ |[TencentARC/t2iadapter_seg_sd14v1](https://huggingface.co/TencentARC/t2iadapter_seg_sd14v1)<br/>*Trained with semantic segmentation* | An [custom](https://github.com/TencentARC/T2I-Adapter/discussions/25) segmentation protocol image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_output.png"/></a> |
46
+ |[TencentARC/t2iadapter_canny_sd15v2](https://huggingface.co/TencentARC/t2iadapter_canny_sd15v2)||
47
+ |[TencentARC/t2iadapter_depth_sd15v2](https://huggingface.co/TencentARC/t2iadapter_depth_sd15v2)||
48
+ |[TencentARC/t2iadapter_sketch_sd15v2](https://huggingface.co/TencentARC/t2iadapter_sketch_sd15v2)||
49
+ |[TencentARC/t2iadapter_zoedepth_sd15v1](https://huggingface.co/TencentARC/t2iadapter_zoedepth_sd15v1)||
50
+
51
+ ## Example
52
+
53
+ 1. Dependencies
54
+
55
+ ```sh
56
+ pip install diffusers transformers matplotlib
57
+ ```
58
+
59
+ 2. Run code:
60
+
61
+ ```python
62
+ from PIL import Image
63
+ import torch
64
+ import numpy as np
65
+ import matplotlib
66
+ from diffusers import T2IAdapter, StableDiffusionAdapterPipeline
67
+
68
+ def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
69
+ """Converts a depth map to a color image.
70
+
71
+ Args:
72
+ value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
73
+ vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
74
+ vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
75
+ cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
76
+ invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
77
+ invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
78
+ background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
79
+ gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
80
+ value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
81
+
82
+ Returns:
83
+ numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
84
+ """
85
+ if isinstance(value, torch.Tensor):
86
+ value = value.detach().cpu().numpy()
87
+
88
+ value = value.squeeze()
89
+ if invalid_mask is None:
90
+ invalid_mask = value == invalid_val
91
+ mask = np.logical_not(invalid_mask)
92
+
93
+ # normalize
94
+ vmin = np.percentile(value[mask],2) if vmin is None else vmin
95
+ vmax = np.percentile(value[mask],85) if vmax is None else vmax
96
+ if vmin != vmax:
97
+ value = (value - vmin) / (vmax - vmin) # vmin..vmax
98
+ else:
99
+ # Avoid 0-division
100
+ value = value * 0.
101
+
102
+ # squeeze last dim if it exists
103
+ # grey out the invalid values
104
+
105
+ value[invalid_mask] = np.nan
106
+ cmapper = matplotlib.cm.get_cmap(cmap)
107
+ if value_transform:
108
+ value = value_transform(value)
109
+ # value = value / value.max()
110
+ value = cmapper(value, bytes=True) # (nxmx4)
111
+
112
+ img = value[...]
113
+ img[invalid_mask] = background_color
114
+
115
+ if gamma_corrected:
116
+ img = img / 255
117
+ img = np.power(img, 2.2)
118
+ img = img * 255
119
+ img = img.astype(np.uint8)
120
+ return img
121
+
122
+ model = torch.hub.load("isl-org/ZoeDepth", "ZoeD_N", pretrained=True)
123
+
124
+ img = Image.open('./images/zoedepth_in.png')
125
+
126
+ out = model.infer_pil(img)
127
+
128
+ zoedepth_image = Image.fromarray(colorize(out)).convert('RGB')
129
+
130
+ zoedepth_image.save('images/zoedepth.png')
131
+
132
+ adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_zoedepth_sd15v1", torch_dtype=torch.float16)
133
+ pipe = StableDiffusionAdapterPipeline.from_pretrained(
134
+ "runwayml/stable-diffusion-v1-5", adapter=adapter, safety_checker=None, torch_dtype=torch.float16, variant="fp16"
135
+ )
136
+
137
+ pipe.to('cuda')
138
+ zoedepth_image_out = pipe(prompt="motorcycle", image=zoedepth_image).images[0]
139
+
140
+ zoedepth_image_out.save('images/zoedepth_out.png')
141
+ ```
142
+
143
+ ![zoedepth_in](./images/zoedepth_in.png)
144
+ ![zoedepth](./images/zoedepth.png)
145
+ ![zoedepth_out](./images/zoedepth_out.png)
images/zoedepth.png ADDED
images/zoedepth_in.png ADDED
images/zoedepth_out.png ADDED