Tengisbold commited on
Commit
9fdf968
1 Parent(s): 72d8fa2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - mn
4
+ license: mit
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: xlm-roberta-large-ner-demo
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # xlm-roberta-large-ner-demo
21
+
22
+ This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1273
25
+ - Precision: 0.8961
26
+ - Recall: 0.9143
27
+ - F1: 0.9051
28
+ - Accuracy: 0.9775
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 32
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 7
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.4849 | 1.0 | 64 | 0.1678 | 0.7415 | 0.7950 | 0.7673 | 0.9511 |
60
+ | 0.1432 | 2.0 | 128 | 0.1370 | 0.8276 | 0.8591 | 0.8430 | 0.9667 |
61
+ | 0.096 | 3.0 | 192 | 0.1122 | 0.8096 | 0.8593 | 0.8337 | 0.9685 |
62
+ | 0.0607 | 4.0 | 256 | 0.1246 | 0.8550 | 0.8829 | 0.8687 | 0.9725 |
63
+ | 0.0363 | 5.0 | 320 | 0.1153 | 0.8878 | 0.9089 | 0.8982 | 0.9768 |
64
+ | 0.0228 | 6.0 | 384 | 0.1229 | 0.8974 | 0.9148 | 0.9060 | 0.9775 |
65
+ | 0.0147 | 7.0 | 448 | 0.1273 | 0.8961 | 0.9143 | 0.9051 | 0.9775 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.28.1
71
+ - Pytorch 2.0.0+cu118
72
+ - Datasets 2.12.0
73
+ - Tokenizers 0.13.3