adarshxs commited on
Commit
d66ce0c
1 Parent(s): 63aed9f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -44
README.md CHANGED
@@ -47,51 +47,8 @@ We will release the training code in some time.
47
  Clone the following repo and following instructions for a CLI based inference.
48
  https://github.com/Tensoic-AI/Cerule
49
 
50
- ```shell
51
- pip install torch transformers accelerate pillow
52
- ```
53
 
54
- *The below code might break! Please use the CLI based inference in the meantime*
55
- ```python
56
- import torch
57
- import transformers
58
- from transformers import AutoModelForCausalLM, AutoTokenizer
59
- from PIL import Image
60
- import warnings
61
-
62
- transformers.logging.set_verbosity_error()
63
- transformers.logging.disable_progress_bar()
64
- warnings.filterwarnings('ignore')
65
-
66
- torch.set_default_device('cuda') # or 'cpu'
67
-
68
- model = AutoModelForCausalLM.from_pretrained(
69
- 'Tensoic/Cerule',
70
- torch_dtype=torch.float16,
71
- device_map='auto',
72
- trust_remote_code=True)
73
- tokenizer = AutoTokenizer.from_pretrained(
74
- 'Tensoic/Cerule',
75
- trust_remote_code=True)
76
-
77
- # text prompt
78
- prompt = 'Who are these charecters?'
79
- text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:"
80
- text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
81
- input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
82
-
83
- image = Image.open('examples/mario.png')
84
- image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
85
-
86
- # generate
87
- output_ids = model.generate(
88
- input_ids,
89
- images=image_tensor,
90
- max_new_tokens=100,
91
- use_cache=False)[0] #keep use_cache=False or else it might run into some torch dim error
92
-
93
- print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=False).strip())
94
- ```
95
 
96
  ## License
97
  Model subject to Gemma(base model license) terms of use along with the underlying datasets(LAOIN and SVIT) subject to their respective licenses. All codes are Apache 2.0
 
47
  Clone the following repo and following instructions for a CLI based inference.
48
  https://github.com/Tensoic-AI/Cerule
49
 
 
 
 
50
 
51
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  ## License
54
  Model subject to Gemma(base model license) terms of use along with the underlying datasets(LAOIN and SVIT) subject to their respective licenses. All codes are Apache 2.0