File size: 1,655 Bytes
901fa6c b77ba7a 901fa6c e442590 901fa6c 846668f e442590 1f81cc4 901fa6c 6e0fe75 901fa6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
license: mit
widget:
- text: |-
<SC1>- как ты?
- <extra_id_0>
example_title: how r u
language:
- ru
pipeline_tag: text2text-generation
---
# Usage
```python
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained('TeraSpace/dialofred')
model = AutoModelForSeq2SeqLM.from_pretrained('TeraSpace/dialofred', device_map=device)# Add torch_dtype=torch.bfloat16 to use less memory
while True:
text_inp = input("=>")
lm_text=f'<SC1>- {text_inp}\n- <extra_id_0>'
input_ids=torch.tensor([tokenizer.encode(lm_text)]).to(model.device)
# outputs=model.generate(input_ids=input_ids,
# max_length=200,
# eos_token_id=tokenizer.eos_token_id,
# early_stopping=True,
# do_sample=True,
# temperature=1.0,
# top_k=0,
# top_p=0.85)
# outputs=model.generate(input_ids,eos_token_id=tokenizer.eos_token_id,early_stopping=True)
outputs=model.generate(input_ids=input_ids,
max_length=200,
eos_token_id=tokenizer.eos_token_id,
early_stopping=True,
do_sample=True,
temperature=0.7,
top_k=0,
top_p=0.8)
print(tokenizer.decode(outputs[0][1:]))
``` |