Terps commited on
Commit
4e31da1
1 Parent(s): 4759bad

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -45.00 +/- 15.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:313dca60ba3b79db23bd41be43c9b645582cb6e4d281eccdca5a1498e45797d2
3
+ size 123167
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ef364be0e50>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7ef364bcbcc0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694636563567455866,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwBEQvw+8/b5TOog9Z96OPvTDXD9rOIg9etWYP5EfDD8bKYg95yBDvf2JOj9TOog9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAawpIv1PHLb+6ta6+b1EVv5qXej/VjYq/gyydPlY5v7+TGYg/pJGjPyNV9T6Tv/E+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAACwSnAI7DZvwFbhD/wqAk9FkqUPemSZT2QudE/wBEQvw+8/b5TOog9Yv80vN2oyrxMYCm89Qn6PLYj9DiNVO08nx9ou7KeL7xCX6c7Is97PhZKnj9BmEO/UfoRP16XFD7CkXA+yw4gv2fejj70w1w/aziIPezcOLxi7cm8ghsJvHNXAT2CKoG5qWzwPEk4DDpJSAG84ZO5O/ZTIj+vhyY/qgVDv5/jVb7MuIs/tyWPPiMQIL961Zg/kR8MPxspiD3/Xy+8VUzKvKEFQrzmPPs8N99Fuqhs8DyENgw6aUgBvB5wnDsUTNW/jY/bv6cDIr9pPBDAKcEcv0FTIz6uudE/5yBDvf2JOj9TOog9asw3vC/AzLycn0i8LlkDPTI7orqSVO08OZVMO8wVYbthu5s7lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[-0.56277084 -0.4955754 0.06651749]\n [ 0.27904055 0.862365 0.06651386]\n [ 1.1940148 0.54735667 0.06648465]\n [-0.0476388 0.72866803 0.06651749]]",
34
+ "desired_goal": "[[-0.78140897 -0.6788227 -0.3412302 ]\n [-0.5832738 0.97887576 -1.0824534 ]\n [ 0.30698022 -1.4939373 1.0632805 ]\n [ 1.2778821 0.47916517 0.47216472]]",
35
+ "observation": "[[-2.6524053e+00 -1.7006878e+00 1.0340272e+00 3.3608377e-02\n 7.2406933e-02 5.6048308e-02 1.6384754e+00 -5.6277084e-01\n -4.9557540e-01 6.6517495e-02 -1.1047216e-02 -2.4738723e-02\n -1.0337900e-02 3.0522326e-02 1.1641478e-04 2.8970981e-02\n -3.5419238e-03 -1.0718988e-02 5.1077912e-03]\n [ 2.4590734e-01 1.2366359e+00 -7.6404196e-01 5.7022578e-01\n 1.4510867e-01 2.3493102e-01 -6.2522572e-01 2.7904055e-01\n 8.6236501e-01 6.6513859e-02 -1.1283141e-02 -2.4649326e-02\n -8.3683748e-03 3.1577539e-02 -2.4636468e-04 2.9348688e-02\n 5.3489633e-04 -7.8907693e-03 5.6633805e-03]\n [ 6.3409364e-01 6.5050787e-01 -7.6180518e-01 -2.0887612e-01\n 1.0915771e+00 2.7958462e-01 -6.2524623e-01 1.1940148e+00\n 5.4735667e-01 6.6484652e-02 -1.0704040e-02 -2.4694601e-02\n -1.1842162e-02 3.0668687e-02 -7.5482152e-04 2.9348686e-02\n 5.3486996e-04 -7.8907991e-03 4.7741076e-03]\n [-1.6663842e+00 -1.7153183e+00 -6.3286823e-01 -2.2536871e+00\n -6.1232239e-01 1.5949728e-01 1.6384790e+00 -4.7638800e-02\n 7.2866803e-01 6.6517495e-02 -1.1218170e-02 -2.4993984e-02\n -1.2245085e-02 3.2067470e-02 -1.2377261e-03 2.8970990e-02\n 3.1216873e-03 -3.4345267e-03 4.7525619e-03]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApxLvPaXE0TwK16M8+/eEPdraq70K16M88L4CPaI4UL0K16M8L+kJvkL3L70K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMLMsPMJxuTyHm1o+YWgXvrmTDbzxCUM95AfePdV1zb0ehUA9WmvPPaQBEj57tTY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAApxLvPaXE0TwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAPv3hD3a2qu9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADwvgI9ojhQvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAL+kJvkL3L70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.1167348 0.02560646 0.02 ]\n [ 0.06492611 -0.08391352 0.02 ]\n [ 0.03192037 -0.05083526 0.02 ]\n [-0.13467859 -0.04296041 0.02 ]]",
45
+ "desired_goal": "[[ 0.01054077 0.02263725 0.21348391]\n [-0.14785911 -0.00864118 0.0476169 ]\n [ 0.10841349 -0.1003224 0.04700195]\n [ 0.10127898 0.14258438 0.04460667]]",
46
+ "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.16734795e-01\n 2.56064627e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 6.49261102e-02\n -8.39135200e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 3.19203734e-02\n -5.08352593e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.34678587e-01\n -4.29604128e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CqW30sFt9AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqW9nRb8m8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXKtDMNc4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXJJe3QUpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXMTFdcB2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXRx1HOKPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXd90zTF3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXcXdCVrzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXfFyBCladX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXks8PnSwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXxQztTkydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXvsPatcOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXy/kNnXedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqX4XbmEGrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYGuyu6mPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYFz0g8r7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYOgsbvPUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYVmDtgKGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYnCYCyQgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYmIClrM1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYum34Kx+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqY1pFkQPJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZHcP4EfUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZGq1og3cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZRBEroW6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZYjzAeq8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZqupbUw0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZp3evZAZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZwEKVpsXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZ1frrxAjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaCo+wC8wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaBKagElmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaFEhib2EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaK6bnX/YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaX8Wj45+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaWU03wTedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaabQswtbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqaf/CIk7fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqas+z+m3wdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqatXjMmngdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqarZPuXu3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqavHEMspYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqa0gPuogndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbBPKEFnqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqa/P9cbBHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbCFzdUKidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbHf16E8JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbUtNahYedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbS0C7sfJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbVxM36yjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbbKRlpXZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqbn49Pk7wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqbl6z/p+udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbpcwHqu9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbvGoR7JGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqb7mD15B1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqb5h5HEuQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqb8aP0Zm7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcB0TDfm+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcPR+z+m4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcNW1D0DmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcQrB9Cu2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcWBjWkJsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcjXHq/ucdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqcha2v0ROdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqckmjbi6ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcqAY51eTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc3earmyPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc1isXBP9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc4n4wh4ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc+L3TNMXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdLmtQsPKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdJuwxFiKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdMgZCOWCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdR8an753dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqde45Lh73dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqdc8i4axYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdgIyj59FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdmVJUYKqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdzffoA4odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqdxk30f5ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqd05gw482dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqd6iPp6hQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeHul41P4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeF0cwQDndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeJUADJU6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeOsyad+YdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqePEHD766dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqecTRYzSDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeaaPbO/tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqedMxO+IudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqei7wSamXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqevOmaYu1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqetOdXko4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqezqjSG8FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqe7KIBRyfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfLsAmzBzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfKWbgCOndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfSh7VrhzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfZ5qmCRPdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fee4c87f52719aadec69624cb5c92cd090de5a993cd665de70eef27bca59851f
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:784ece944389bad20e6dc5473fb076b772d8679258675d6688aed81057ba0a60
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ef364be0e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ef364bcbcc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694636563567455866, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwBEQvw+8/b5TOog9Z96OPvTDXD9rOIg9etWYP5EfDD8bKYg95yBDvf2JOj9TOog9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAawpIv1PHLb+6ta6+b1EVv5qXej/VjYq/gyydPlY5v7+TGYg/pJGjPyNV9T6Tv/E+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAACwSnAI7DZvwFbhD/wqAk9FkqUPemSZT2QudE/wBEQvw+8/b5TOog9Yv80vN2oyrxMYCm89Qn6PLYj9DiNVO08nx9ou7KeL7xCX6c7Is97PhZKnj9BmEO/UfoRP16XFD7CkXA+yw4gv2fejj70w1w/aziIPezcOLxi7cm8ghsJvHNXAT2CKoG5qWzwPEk4DDpJSAG84ZO5O/ZTIj+vhyY/qgVDv5/jVb7MuIs/tyWPPiMQIL961Zg/kR8MPxspiD3/Xy+8VUzKvKEFQrzmPPs8N99Fuqhs8DyENgw6aUgBvB5wnDsUTNW/jY/bv6cDIr9pPBDAKcEcv0FTIz6uudE/5yBDvf2JOj9TOog9asw3vC/AzLycn0i8LlkDPTI7orqSVO08OZVMO8wVYbthu5s7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.56277084 -0.4955754 0.06651749]\n [ 0.27904055 0.862365 0.06651386]\n [ 1.1940148 0.54735667 0.06648465]\n [-0.0476388 0.72866803 0.06651749]]", "desired_goal": "[[-0.78140897 -0.6788227 -0.3412302 ]\n [-0.5832738 0.97887576 -1.0824534 ]\n [ 0.30698022 -1.4939373 1.0632805 ]\n [ 1.2778821 0.47916517 0.47216472]]", "observation": "[[-2.6524053e+00 -1.7006878e+00 1.0340272e+00 3.3608377e-02\n 7.2406933e-02 5.6048308e-02 1.6384754e+00 -5.6277084e-01\n -4.9557540e-01 6.6517495e-02 -1.1047216e-02 -2.4738723e-02\n -1.0337900e-02 3.0522326e-02 1.1641478e-04 2.8970981e-02\n -3.5419238e-03 -1.0718988e-02 5.1077912e-03]\n [ 2.4590734e-01 1.2366359e+00 -7.6404196e-01 5.7022578e-01\n 1.4510867e-01 2.3493102e-01 -6.2522572e-01 2.7904055e-01\n 8.6236501e-01 6.6513859e-02 -1.1283141e-02 -2.4649326e-02\n -8.3683748e-03 3.1577539e-02 -2.4636468e-04 2.9348688e-02\n 5.3489633e-04 -7.8907693e-03 5.6633805e-03]\n [ 6.3409364e-01 6.5050787e-01 -7.6180518e-01 -2.0887612e-01\n 1.0915771e+00 2.7958462e-01 -6.2524623e-01 1.1940148e+00\n 5.4735667e-01 6.6484652e-02 -1.0704040e-02 -2.4694601e-02\n -1.1842162e-02 3.0668687e-02 -7.5482152e-04 2.9348686e-02\n 5.3486996e-04 -7.8907991e-03 4.7741076e-03]\n [-1.6663842e+00 -1.7153183e+00 -6.3286823e-01 -2.2536871e+00\n -6.1232239e-01 1.5949728e-01 1.6384790e+00 -4.7638800e-02\n 7.2866803e-01 6.6517495e-02 -1.1218170e-02 -2.4993984e-02\n -1.2245085e-02 3.2067470e-02 -1.2377261e-03 2.8970990e-02\n 3.1216873e-03 -3.4345267e-03 4.7525619e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApxLvPaXE0TwK16M8+/eEPdraq70K16M88L4CPaI4UL0K16M8L+kJvkL3L70K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMLMsPMJxuTyHm1o+YWgXvrmTDbzxCUM95AfePdV1zb0ehUA9WmvPPaQBEj57tTY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAApxLvPaXE0TwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAPv3hD3a2qu9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADwvgI9ojhQvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAL+kJvkL3L70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.1167348 0.02560646 0.02 ]\n [ 0.06492611 -0.08391352 0.02 ]\n [ 0.03192037 -0.05083526 0.02 ]\n [-0.13467859 -0.04296041 0.02 ]]", "desired_goal": "[[ 0.01054077 0.02263725 0.21348391]\n [-0.14785911 -0.00864118 0.0476169 ]\n [ 0.10841349 -0.1003224 0.04700195]\n [ 0.10127898 0.14258438 0.04460667]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.16734795e-01\n 2.56064627e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 6.49261102e-02\n -8.39135200e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 3.19203734e-02\n -5.08352593e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.34678587e-01\n -4.29604128e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CqW30sFt9AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqW9nRb8m8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXKtDMNc4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXJJe3QUpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXMTFdcB2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXRx1HOKPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXd90zTF3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXcXdCVrzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXfFyBCladX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXks8PnSwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXxQztTkydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXvsPatcOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqXy/kNnXedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqX4XbmEGrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYGuyu6mPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYFz0g8r7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYOgsbvPUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYVmDtgKGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYnCYCyQgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYmIClrM1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqYum34Kx+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqY1pFkQPJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZHcP4EfUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZGq1og3cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZRBEroW6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZYjzAeq8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZqupbUw0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZp3evZAZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZwEKVpsXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqZ1frrxAjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaCo+wC8wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaBKagElmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaFEhib2EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaK6bnX/YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaX8Wj45+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaWU03wTedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqaabQswtbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqaf/CIk7fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqas+z+m3wdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqatXjMmngdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqarZPuXu3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqavHEMspYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqa0gPuogndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbBPKEFnqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqa/P9cbBHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbCFzdUKidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbHf16E8JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbUtNahYedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbS0C7sfJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbVxM36yjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbbKRlpXZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqbn49Pk7wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqbl6z/p+udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbpcwHqu9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqbvGoR7JGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqb7mD15B1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqb5h5HEuQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqb8aP0Zm7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcB0TDfm+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcPR+z+m4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcNW1D0DmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcQrB9Cu2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcWBjWkJsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcjXHq/ucdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqcha2v0ROdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqckmjbi6ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqcqAY51eTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc3earmyPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc1isXBP9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc4n4wh4ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqc+L3TNMXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdLmtQsPKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdJuwxFiKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdMgZCOWCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdR8an753dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqde45Lh73dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqdc8i4axYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdgIyj59FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdmVJUYKqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqdzffoA4odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqdxk30f5ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqd05gw482dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqd6iPp6hQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeHul41P4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeF0cwQDndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeJUADJU6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeOsyad+YdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqePEHD766dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqecTRYzSDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqeaaPbO/tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqedMxO+IudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqei7wSamXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqevOmaYu1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqetOdXko4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqezqjSG8FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqe7KIBRyfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfLsAmzBzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfKWbgCOndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfSh7VrhzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqfZ5qmCRPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (768 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -45.0, "std_reward": 15.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-13T21:19:19.568782"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbde0b55780b3cd3504aaddc1267293ec89d266a3f3b9b5b33f7edcf90f25eaa
3
+ size 3013