Create image_embedding_phi3_v.py
Browse files- image_embedding_phi3_v.py +322 -0
image_embedding_phi3_v.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import torch
|
17 |
+
from torch import nn
|
18 |
+
from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig
|
19 |
+
from transformers.models.clip.modeling_clip import CLIPAttention
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
try:
|
23 |
+
from flash_attn import flash_attn_func
|
24 |
+
except ImportError:
|
25 |
+
pass
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
MAX_INPUT_ID = int(1e9)
|
31 |
+
|
32 |
+
CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
|
33 |
+
attention_dropout=0.0,
|
34 |
+
dropout=0.0,
|
35 |
+
hidden_act="quick_gelu",
|
36 |
+
hidden_size=1024,
|
37 |
+
image_size=336,
|
38 |
+
initializer_factor=1.0,
|
39 |
+
initializer_range=0.02,
|
40 |
+
intermediate_size=4096,
|
41 |
+
layer_norm_eps=1e-05,
|
42 |
+
num_attention_heads=16,
|
43 |
+
num_channels=3,
|
44 |
+
num_hidden_layers=24,
|
45 |
+
patch_size=14,
|
46 |
+
projection_dim=768
|
47 |
+
)
|
48 |
+
|
49 |
+
class CLIPAttentionFA2(CLIPAttention):
|
50 |
+
"""Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)"""
|
51 |
+
|
52 |
+
def forward(self,
|
53 |
+
hidden_states,
|
54 |
+
attention_mask=None,
|
55 |
+
causal_attention_mask=None,
|
56 |
+
output_attentions=False,
|
57 |
+
):
|
58 |
+
"""Input shape: Batch x Time x Channel"""
|
59 |
+
|
60 |
+
assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask"
|
61 |
+
assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask"
|
62 |
+
assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions"
|
63 |
+
|
64 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
65 |
+
query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
|
66 |
+
key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
|
67 |
+
value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
|
68 |
+
|
69 |
+
attn_output = flash_attn_func(
|
70 |
+
query_states,
|
71 |
+
key_states,
|
72 |
+
value_states,
|
73 |
+
dropout_p=self.dropout if self.training else 0.0,
|
74 |
+
softmax_scale=self.scale,
|
75 |
+
causal=False,
|
76 |
+
).reshape(bsz, tgt_len, embed_dim)
|
77 |
+
|
78 |
+
attn_output = self.out_proj(attn_output)
|
79 |
+
return attn_output, None
|
80 |
+
|
81 |
+
|
82 |
+
class Phi3ImageEmbedding(nn.Module):
|
83 |
+
"""Phi3 Image embedding."""
|
84 |
+
|
85 |
+
def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
|
86 |
+
super().__init__()
|
87 |
+
|
88 |
+
# n_embed or hidden_size
|
89 |
+
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
|
90 |
+
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
|
91 |
+
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
|
92 |
+
self.drop = nn.Dropout(embd_drop)
|
93 |
+
else:
|
94 |
+
self.drop = None
|
95 |
+
|
96 |
+
self.wte = wte
|
97 |
+
|
98 |
+
if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
|
99 |
+
assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
|
100 |
+
assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
|
101 |
+
assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
|
102 |
+
assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
|
103 |
+
clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
|
104 |
+
self.img_processor = CLIPVisionModel(clip_config)
|
105 |
+
image_dim_out = config.img_processor['image_dim_out']
|
106 |
+
self.num_img_tokens = config.img_processor['num_img_tokens']
|
107 |
+
|
108 |
+
# FA2 in CLIP
|
109 |
+
if config._attn_implementation == 'flash_attention_2':
|
110 |
+
for layer in self.img_processor.vision_model.encoder.layers:
|
111 |
+
clip_fa2 = CLIPAttentionFA2(clip_config)
|
112 |
+
del layer.self_attn
|
113 |
+
layer.self_attn = clip_fa2
|
114 |
+
else:
|
115 |
+
raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
|
116 |
+
|
117 |
+
self.image_dim_out = image_dim_out
|
118 |
+
self.img_sizes = None
|
119 |
+
|
120 |
+
# global_gn and sub_gn for hd transform, serves as line separator
|
121 |
+
self.use_hd_transform = kwargs.get('use_hd_transform', False)
|
122 |
+
self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
|
123 |
+
self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
|
124 |
+
# with_hd_transform and with_learnable_separator should have same value
|
125 |
+
assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
|
126 |
+
if self.with_learnable_separator:
|
127 |
+
assert self.use_hd_transform, 'learnable separator is only for hd transform'
|
128 |
+
# 1024 * 4, merge spatial to channel dimension
|
129 |
+
self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
|
130 |
+
self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
|
131 |
+
logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
|
132 |
+
|
133 |
+
projection_cls = kwargs.get('projection_cls', 'linear')
|
134 |
+
if projection_cls == 'linear':
|
135 |
+
self.img_projection = nn.Linear(image_dim_out, hidden_size)
|
136 |
+
elif projection_cls == 'mlp' and self.use_hd_transform:
|
137 |
+
dim_projection = hidden_size
|
138 |
+
depth = 2
|
139 |
+
layers = [nn.Linear(image_dim_out * 4, dim_projection)]
|
140 |
+
for _ in range(1, depth):
|
141 |
+
layers.extend([nn.GELU(),
|
142 |
+
nn.Linear(dim_projection, dim_projection)])
|
143 |
+
self.img_projection = nn.Sequential(*layers)
|
144 |
+
elif projection_cls == 'mlp':
|
145 |
+
dim_projection = hidden_size
|
146 |
+
depth = 2
|
147 |
+
layers = [nn.Linear(image_dim_out, dim_projection)]
|
148 |
+
for _ in range(1, depth):
|
149 |
+
layers.extend([nn.GELU(),
|
150 |
+
nn.Linear(dim_projection, dim_projection)])
|
151 |
+
self.img_projection = nn.Sequential(*layers)
|
152 |
+
else:
|
153 |
+
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
|
154 |
+
|
155 |
+
self.vocab_size = config.vocab_size
|
156 |
+
self.img_features = None
|
157 |
+
|
158 |
+
if isinstance(config.img_processor, dict):
|
159 |
+
self.layer_idx = config.img_processor.get('layer_idx', -2)
|
160 |
+
self.type_feature = config.img_processor.get('type_feature', 'patch')
|
161 |
+
else:
|
162 |
+
self.layer_idx = -2
|
163 |
+
self.type_feature = 'patch'
|
164 |
+
|
165 |
+
|
166 |
+
def set_img_features(self, img_features: torch.FloatTensor) -> None:
|
167 |
+
self.img_features = img_features
|
168 |
+
|
169 |
+
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
|
170 |
+
self.img_sizes = img_sizes
|
171 |
+
|
172 |
+
def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
|
173 |
+
LAYER_IDX = self.layer_idx
|
174 |
+
TYPE_FEATURE = self.type_feature
|
175 |
+
|
176 |
+
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
|
177 |
+
img_feature = img_processor_output.hidden_states[LAYER_IDX]
|
178 |
+
|
179 |
+
if TYPE_FEATURE == "patch":
|
180 |
+
patch_feature = img_feature[:, 1:]
|
181 |
+
return patch_feature
|
182 |
+
|
183 |
+
raise NotImplementedError
|
184 |
+
|
185 |
+
def forward(
|
186 |
+
self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None
|
187 |
+
) -> torch.FloatTensor:
|
188 |
+
input_shape = input_ids.size()
|
189 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
190 |
+
|
191 |
+
# positions for image tokens
|
192 |
+
positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True)
|
193 |
+
has_image = len(positions[0].tolist()) > 0
|
194 |
+
input_ids = input_ids.clamp_min(0).clamp_max(self.vocab_size).detach()
|
195 |
+
hidden_states = self.wte(input_ids)
|
196 |
+
|
197 |
+
if has_image:
|
198 |
+
assert self.use_hd_transform
|
199 |
+
num_images, num_crops, c, h, w = pixel_values.shape
|
200 |
+
assert c == 3 and h == w == 336
|
201 |
+
img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape(
|
202 |
+
num_images, num_crops, -1, self.image_dim_out
|
203 |
+
)
|
204 |
+
image_features_proj = self.hd_feature_transform(img_features, image_sizes)
|
205 |
+
hidden_states = hidden_states.index_put(
|
206 |
+
positions, image_features_proj, accumulate=False
|
207 |
+
)
|
208 |
+
|
209 |
+
if self.drop is not None:
|
210 |
+
hidden_states = self.drop(hidden_states)
|
211 |
+
|
212 |
+
return hidden_states
|
213 |
+
|
214 |
+
def hd_feature_transform(self, image_features, image_sizes):
|
215 |
+
"""
|
216 |
+
image_features: (num_images, num_crops+1, 24*24, 1024)
|
217 |
+
"""
|
218 |
+
assert (
|
219 |
+
self.hd_transform_order == 'sub_glb'
|
220 |
+
), f'hd_transform_order `{self.hd_transform_order}` not implemented'
|
221 |
+
if isinstance(self.img_projection, nn.Sequential):
|
222 |
+
target_device = self.img_projection[0].bias.device
|
223 |
+
target_dtype = self.img_projection[0].bias.dtype
|
224 |
+
else: # It's a single nn.Linear layer
|
225 |
+
target_device = self.img_projection.bias.device
|
226 |
+
target_dtype = self.img_projection.bias.dtype
|
227 |
+
|
228 |
+
global_image_features = image_features[:, 0] # (num_images, 24*24, 1024)
|
229 |
+
# global feature can be viewed as a special HD case with num_crops 1x1
|
230 |
+
global_image_features_hd = self.reshape_hd_patches_2x2merge(global_image_features, 1, 1)
|
231 |
+
global_image_features_hd_newline = self.add_image_newline(global_image_features_hd)
|
232 |
+
|
233 |
+
all_image_embeddings = []
|
234 |
+
# need a for loop to process each image because of different image sizes
|
235 |
+
# (patch arrangement is different for each image)
|
236 |
+
for i, img_size in enumerate(image_sizes):
|
237 |
+
h, w = img_size
|
238 |
+
h_crop = h // 336
|
239 |
+
w_crop = w // 336
|
240 |
+
num_crops = h_crop * w_crop
|
241 |
+
|
242 |
+
# NOTE: real num_crops is padded
|
243 |
+
# (num_crops, 24*24, 1024)
|
244 |
+
sub_image_features = image_features[i, 1 : 1 + num_crops]
|
245 |
+
sub_image_features_hd = self.reshape_hd_patches_2x2merge(
|
246 |
+
sub_image_features, h_crop, w_crop
|
247 |
+
)
|
248 |
+
sub_image_features_hd_newline = self.add_image_newline(sub_image_features_hd)
|
249 |
+
|
250 |
+
# [sub features, separator, global features]
|
251 |
+
all_image_embeddings.extend(
|
252 |
+
[
|
253 |
+
sub_image_features_hd_newline.squeeze(0), # (h_crop*12*(w_crop*12+1), 4096)
|
254 |
+
self.glb_GN.squeeze(0),
|
255 |
+
global_image_features_hd_newline[i],
|
256 |
+
]
|
257 |
+
)
|
258 |
+
|
259 |
+
image_features_proj = self.img_projection(
|
260 |
+
torch.cat(all_image_embeddings, dim=0).to(target_device).to(target_dtype)
|
261 |
+
)
|
262 |
+
|
263 |
+
return image_features_proj
|
264 |
+
|
265 |
+
def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop):
|
266 |
+
"""
|
267 |
+
image_features: (num_images*num_crops, 24*24, 1024)
|
268 |
+
output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops
|
269 |
+
"""
|
270 |
+
N, L, C = image_features.shape
|
271 |
+
assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0
|
272 |
+
num_images = N // (h_crop * w_crop)
|
273 |
+
H = int(L**0.5)
|
274 |
+
image_features_hd = (
|
275 |
+
image_features.reshape(N, H, H, C) # N, 24, 24, 1024
|
276 |
+
.reshape(N, H // 2, 2, H // 2, 2, C) # N, 12, 2, 12, 2, 1024
|
277 |
+
.permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024
|
278 |
+
.reshape(N, -1, 4 * C) # N, 144, 4096
|
279 |
+
.reshape(
|
280 |
+
num_images, h_crop, w_crop, H // 2, H // 2, -1
|
281 |
+
) # n_img, h_crop, w_crop, 12, 12, 4096
|
282 |
+
.permute(0, 1, 3, 2, 4, 5) # n_img, h_crop, 12, w_crop, 12, 4096
|
283 |
+
.reshape(
|
284 |
+
num_images, h_crop * H // 2, w_crop * H // 2, 4 * C
|
285 |
+
) # n_img, h_crop*12, w_crop*12, 4096
|
286 |
+
)
|
287 |
+
|
288 |
+
# alternative implementation using einops
|
289 |
+
# from einops import rearrange
|
290 |
+
# image_features_nhwc = rearrange(
|
291 |
+
# image_features,
|
292 |
+
# 'N (H W) c -> N H W c',
|
293 |
+
# H=H,
|
294 |
+
# W=H,
|
295 |
+
# )
|
296 |
+
# image_features_2x2merge = rearrange(
|
297 |
+
# image_features_nhwc,
|
298 |
+
# 'N (h h_pool) (w w_pool) c -> N h w (h_pool w_pool c)',
|
299 |
+
# h_pool=2,
|
300 |
+
# w_pool=2,
|
301 |
+
# )
|
302 |
+
# image_features_hd = rearrange(
|
303 |
+
# image_features_2x2merge,
|
304 |
+
# '(n_img h_crop w_crop) h w C -> n_img (h_crop h) (w_crop w) C',
|
305 |
+
# h_crop=h_crop,
|
306 |
+
# w_crop=w_crop,
|
307 |
+
# )
|
308 |
+
|
309 |
+
return image_features_hd
|
310 |
+
|
311 |
+
def add_image_newline(self, image_features_hd):
|
312 |
+
"""
|
313 |
+
image_features_hd: (num_images, h_crop*12, w_crop*12, 4096)
|
314 |
+
output: (num_images, (h_crop*12) * (w_crop*12+1), 4096)
|
315 |
+
"""
|
316 |
+
num_images, h, w, hid_dim = image_features_hd.shape
|
317 |
+
# add the newline token to the HD image feature patches
|
318 |
+
newline_embeddings = self.sub_GN.expand(num_images, h, -1, -1) # (n_img, h, 1, hid_dim)
|
319 |
+
image_features_hd_newline = torch.cat(
|
320 |
+
[image_features_hd, newline_embeddings], dim=2
|
321 |
+
).reshape(num_images, -1, hid_dim)
|
322 |
+
return image_features_hd_newline
|