File size: 1,950 Bytes
6a5e559 890b63d 6a5e559 890b63d 6a5e559 890b63d 6a5e559 f71bc02 6a5e559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
base_model: albert-base-v2
tags:
- generated_from_keras_callback
model-index:
- name: Thamer/albert-fine-tuned
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Thamer/albert-fine-tuned
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6987
- Train Binary Accuracy: 0.5410
- Validation Loss: 0.6446
- Validation Binary Accuracy: 0.6835
- Train Accuracy: 0.5333
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 3156, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Binary Accuracy | Validation Loss | Validation Binary Accuracy | Train Accuracy | Epoch |
|:----------:|:---------------------:|:---------------:|:--------------------------:|:--------------:|:-----:|
| 0.6987 | 0.5410 | 0.6446 | 0.6835 | 0.5333 | 0 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.11.0
- Datasets 2.13.1
- Tokenizers 0.13.3
|