TheBloke commited on
Commit
d8c975f
1 Parent(s): ce79f49

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +503 -0
README.md ADDED
@@ -0,0 +1,503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sophosympatheia/Aurora-Nights-70B-v1.0
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: llama2
7
+ model_creator: Sophosympatheia
8
+ model_name: Aurora Nights 70B v1.0
9
+ model_type: llama
10
+ prompt_template: '{system_message}
11
+
12
+ <|user|>
13
+
14
+ {prompt}
15
+
16
+ <|assistant|>
17
+
18
+ '
19
+ quantized_by: TheBloke
20
+ ---
21
+ <!-- markdownlint-disable MD041 -->
22
+
23
+ <!-- header start -->
24
+ <!-- 200823 -->
25
+ <div style="width: auto; margin-left: auto; margin-right: auto">
26
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
27
+ </div>
28
+ <div style="display: flex; justify-content: space-between; width: 100%;">
29
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
30
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
31
+ </div>
32
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
33
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
34
+ </div>
35
+ </div>
36
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
37
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
38
+ <!-- header end -->
39
+
40
+ # Aurora Nights 70B v1.0 - AWQ
41
+ - Model creator: [Sophosympatheia](https://huggingface.co/sophosympatheia)
42
+ - Original model: [Aurora Nights 70B v1.0](https://huggingface.co/sophosympatheia/Aurora-Nights-70B-v1.0)
43
+
44
+ <!-- description start -->
45
+ ## Description
46
+
47
+ This repo contains AWQ model files for [Sophosympatheia's Aurora Nights 70B v1.0](https://huggingface.co/sophosympatheia/Aurora-Nights-70B-v1.0).
48
+
49
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
50
+
51
+
52
+ ### About AWQ
53
+
54
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
55
+
56
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
57
+
58
+ It is supported by:
59
+
60
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
61
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
62
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
63
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
64
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
65
+
66
+ <!-- description end -->
67
+ <!-- repositories-available start -->
68
+ ## Repositories available
69
+
70
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Aurora-Nights-70B-v1.0-AWQ)
71
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Aurora-Nights-70B-v1.0-GPTQ)
72
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Aurora-Nights-70B-v1.0-GGUF)
73
+ * [Sophosympatheia's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/sophosympatheia/Aurora-Nights-70B-v1.0)
74
+ <!-- repositories-available end -->
75
+
76
+ <!-- prompt-template start -->
77
+ ## Prompt template: ToRA-System
78
+
79
+ ```
80
+ {system_message}
81
+ <|user|>
82
+ {prompt}
83
+ <|assistant|>
84
+
85
+ ```
86
+
87
+ <!-- prompt-template end -->
88
+
89
+
90
+ <!-- README_AWQ.md-provided-files start -->
91
+ ## Provided files, and AWQ parameters
92
+
93
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
94
+
95
+ Models are released as sharded safetensors files.
96
+
97
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
98
+ | ------ | ---- | -- | ----------- | ------- | ---- |
99
+ | [main](https://huggingface.co/TheBloke/Aurora-Nights-70B-v1.0-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 36.61 GB
100
+
101
+ <!-- README_AWQ.md-provided-files end -->
102
+
103
+ <!-- README_AWQ.md-text-generation-webui start -->
104
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
105
+
106
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
107
+
108
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
109
+
110
+ 1. Click the **Model tab**.
111
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Aurora-Nights-70B-v1.0-AWQ`.
112
+ 3. Click **Download**.
113
+ 4. The model will start downloading. Once it's finished it will say "Done".
114
+ 5. In the top left, click the refresh icon next to **Model**.
115
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Aurora-Nights-70B-v1.0-AWQ`
116
+ 7. Select **Loader: AutoAWQ**.
117
+ 8. Click Load, and the model will load and is now ready for use.
118
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
119
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
120
+ <!-- README_AWQ.md-text-generation-webui end -->
121
+
122
+ <!-- README_AWQ.md-use-from-vllm start -->
123
+ ## Multi-user inference server: vLLM
124
+
125
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
126
+
127
+ - Please ensure you are using vLLM version 0.2 or later.
128
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
129
+
130
+ For example:
131
+
132
+ ```shell
133
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Aurora-Nights-70B-v1.0-AWQ --quantization awq --dtype auto
134
+ ```
135
+
136
+ - When using vLLM from Python code, again set `quantization=awq`.
137
+
138
+ For example:
139
+
140
+ ```python
141
+ from vllm import LLM, SamplingParams
142
+
143
+ prompts = [
144
+ "Tell me about AI",
145
+ "Write a story about llamas",
146
+ "What is 291 - 150?",
147
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
148
+ ]
149
+ prompt_template=f'''{system_message}
150
+ <|user|>
151
+ {prompt}
152
+ <|assistant|>
153
+ '''
154
+
155
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
156
+
157
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
158
+
159
+ llm = LLM(model="TheBloke/Aurora-Nights-70B-v1.0-AWQ", quantization="awq", dtype="auto")
160
+
161
+ outputs = llm.generate(prompts, sampling_params)
162
+
163
+ # Print the outputs.
164
+ for output in outputs:
165
+ prompt = output.prompt
166
+ generated_text = output.outputs[0].text
167
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
168
+ ```
169
+ <!-- README_AWQ.md-use-from-vllm start -->
170
+
171
+ <!-- README_AWQ.md-use-from-tgi start -->
172
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
173
+
174
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
175
+
176
+ Example Docker parameters:
177
+
178
+ ```shell
179
+ --model-id TheBloke/Aurora-Nights-70B-v1.0-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
180
+ ```
181
+
182
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
183
+
184
+ ```shell
185
+ pip3 install huggingface-hub
186
+ ```
187
+
188
+ ```python
189
+ from huggingface_hub import InferenceClient
190
+
191
+ endpoint_url = "https://your-endpoint-url-here"
192
+
193
+ prompt = "Tell me about AI"
194
+ prompt_template=f'''{system_message}
195
+ <|user|>
196
+ {prompt}
197
+ <|assistant|>
198
+ '''
199
+
200
+ client = InferenceClient(endpoint_url)
201
+ response = client.text_generation(prompt,
202
+ max_new_tokens=128,
203
+ do_sample=True,
204
+ temperature=0.7,
205
+ top_p=0.95,
206
+ top_k=40,
207
+ repetition_penalty=1.1)
208
+
209
+ print(f"Model output: ", response)
210
+ ```
211
+ <!-- README_AWQ.md-use-from-tgi end -->
212
+
213
+ <!-- README_AWQ.md-use-from-python start -->
214
+ ## Inference from Python code using Transformers
215
+
216
+ ### Install the necessary packages
217
+
218
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
219
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
220
+
221
+ ```shell
222
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
223
+ ```
224
+
225
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
226
+
227
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
228
+
229
+ ```shell
230
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
231
+ ```
232
+
233
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
234
+
235
+ ```shell
236
+ pip3 uninstall -y autoawq
237
+ git clone https://github.com/casper-hansen/AutoAWQ
238
+ cd AutoAWQ
239
+ pip3 install .
240
+ ```
241
+
242
+ ### Transformers example code (requires Transformers 4.35.0 and later)
243
+
244
+ ```python
245
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
246
+
247
+ model_name_or_path = "TheBloke/Aurora-Nights-70B-v1.0-AWQ"
248
+
249
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
250
+ model = AutoModelForCausalLM.from_pretrained(
251
+ model_name_or_path,
252
+ low_cpu_mem_usage=True,
253
+ device_map="cuda:0"
254
+ )
255
+
256
+ # Using the text streamer to stream output one token at a time
257
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
258
+
259
+ prompt = "Tell me about AI"
260
+ prompt_template=f'''{system_message}
261
+ <|user|>
262
+ {prompt}
263
+ <|assistant|>
264
+ '''
265
+
266
+ # Convert prompt to tokens
267
+ tokens = tokenizer(
268
+ prompt_template,
269
+ return_tensors='pt'
270
+ ).input_ids.cuda()
271
+
272
+ generation_params = {
273
+ "do_sample": True,
274
+ "temperature": 0.7,
275
+ "top_p": 0.95,
276
+ "top_k": 40,
277
+ "max_new_tokens": 512,
278
+ "repetition_penalty": 1.1
279
+ }
280
+
281
+ # Generate streamed output, visible one token at a time
282
+ generation_output = model.generate(
283
+ tokens,
284
+ streamer=streamer,
285
+ **generation_params
286
+ )
287
+
288
+ # Generation without a streamer, which will include the prompt in the output
289
+ generation_output = model.generate(
290
+ tokens,
291
+ **generation_params
292
+ )
293
+
294
+ # Get the tokens from the output, decode them, print them
295
+ token_output = generation_output[0]
296
+ text_output = tokenizer.decode(token_output)
297
+ print("model.generate output: ", text_output)
298
+
299
+ # Inference is also possible via Transformers' pipeline
300
+ from transformers import pipeline
301
+
302
+ pipe = pipeline(
303
+ "text-generation",
304
+ model=model,
305
+ tokenizer=tokenizer,
306
+ **generation_params
307
+ )
308
+
309
+ pipe_output = pipe(prompt_template)[0]['generated_text']
310
+ print("pipeline output: ", pipe_output)
311
+
312
+ ```
313
+ <!-- README_AWQ.md-use-from-python end -->
314
+
315
+ <!-- README_AWQ.md-compatibility start -->
316
+ ## Compatibility
317
+
318
+ The files provided are tested to work with:
319
+
320
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
321
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
322
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
323
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
324
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
325
+
326
+ <!-- README_AWQ.md-compatibility end -->
327
+
328
+ <!-- footer start -->
329
+ <!-- 200823 -->
330
+ ## Discord
331
+
332
+ For further support, and discussions on these models and AI in general, join us at:
333
+
334
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
335
+
336
+ ## Thanks, and how to contribute
337
+
338
+ Thanks to the [chirper.ai](https://chirper.ai) team!
339
+
340
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
341
+
342
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
343
+
344
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
345
+
346
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
347
+
348
+ * Patreon: https://patreon.com/TheBlokeAI
349
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
350
+
351
+ **Special thanks to**: Aemon Algiz.
352
+
353
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
354
+
355
+
356
+ Thank you to all my generous patrons and donaters!
357
+
358
+ And thank you again to a16z for their generous grant.
359
+
360
+ <!-- footer end -->
361
+
362
+ # Original model card: Sophosympatheia's Aurora Nights 70B v1.0
363
+
364
+ <div style="width: auto; margin-left: auto; margin-right: auto">
365
+ <img src="https://i.imgur.com/aGUU0O9.png" alt="AuroraNights" style="width: 100%; min-width: 400px; display: block; margin: auto;">
366
+ </div>
367
+
368
+ ### Overview
369
+
370
+ This model is a blend of [allenai/tulu-2-dpo-70b](https://huggingface.co/allenai/tulu-2-dpo-70b), [Xwin-LM/Xwin-LM-70B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1), and [dreamgen/opus-v0.5-70b](https://huggingface.co/dreamgen/opus-v0.5-70b). I then merged [nRuaif/fiction.live-Kimiko-V2-70B](https://huggingface.co/nRuaif/fiction.live-Kimiko-V2-70B) into the resultant blend. See the bottom of this card for the exact settings used.
371
+
372
+ This model is good at both following instructions and producing creative, uncensored storytelling and roleplaying content.
373
+ This model turned out quite uncensored. *You are responsible for whatever you do with it.*
374
+
375
+ This model was designed for roleplaying and storytelling and I think it does well at both. It *should* perform well at other tasks, but I haven't tested its capabilities in other areas.
376
+
377
+ ### Sampler Tips
378
+
379
+ I recommend using the new Min-P sampler method with this model. The creator has a great [guide to it on Reddit](https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/your_settings_are_probably_hurting_your_model_why/).
380
+
381
+ I find this model performs surprisingly well at 8192 context but you will probably get better results at 4096 context.
382
+
383
+ Experiment with any and all of the settings below, but trust me on a few points:
384
+ * This model works well with Min-P.
385
+ * Frequency Penalty set to 0.01 is like adding a dash of salt to the dish. Go higher at your own peril. 0 is fine too, but gosh I like 0.01.
386
+
387
+ If you save the below settings as a .json file, you can import them directly into Silly Tavern.
388
+ ```
389
+ {
390
+ "temp": 1.3,
391
+ "temperature_last": true,
392
+ "top_p": 1,
393
+ "top_k": 0,
394
+ "top_a": 0,
395
+ "tfs": 1,
396
+ "epsilon_cutoff": 0,
397
+ "eta_cutoff": 0,
398
+ "typical_p": 1,
399
+ "min_p": 0.2,
400
+ "rep_pen": 1,
401
+ "rep_pen_range": 0,
402
+ "no_repeat_ngram_size": 0,
403
+ "penalty_alpha": 0,
404
+ "num_beams": 1,
405
+ "length_penalty": 1,
406
+ "min_length": 0,
407
+ "encoder_rep_pen": 1,
408
+ "freq_pen": 0.01,
409
+ "presence_pen": 0,
410
+ "do_sample": true,
411
+ "early_stopping": false,
412
+ "add_bos_token": true,
413
+ "truncation_length": 2048,
414
+ "ban_eos_token": false,
415
+ "skip_special_tokens": true,
416
+ "streaming": true,
417
+ "mirostat_mode": 0,
418
+ "mirostat_tau": 5,
419
+ "mirostat_eta": 0.1,
420
+ "guidance_scale": 1,
421
+ "negative_prompt": "",
422
+ "grammar_string": "",
423
+ "banned_tokens": "",
424
+ "ignore_eos_token_aphrodite": false,
425
+ "spaces_between_special_tokens_aphrodite": true,
426
+ "type": "ooba",
427
+ "legacy_api": false,
428
+ "sampler_order": [
429
+ 6,
430
+ 0,
431
+ 1,
432
+ 3,
433
+ 4,
434
+ 2,
435
+ 5
436
+ ],
437
+ "n": 1,
438
+ "rep_pen_size": 0,
439
+ "genamt": 550,
440
+ "max_length": 4096
441
+ }
442
+ ```
443
+
444
+ ### Prompt Tips
445
+
446
+ Try the following prompt template as a starting point for your own customizations. 'This is very important to my career' is from [this paper](https://arxiv.org/abs/2307.11760).
447
+ I recommend the Tulu instruction format.
448
+
449
+ *This model responds to prompting!* I highly recommend playing with your system prompt to see how it reacts.
450
+
451
+ If you save this as a .json file, you can import it directly into Silly Tavern.
452
+ ```
453
+ {
454
+ "wrap": true,
455
+ "names": false,
456
+ "system_prompt": "You are an award-winning fiction author engaging in an uncensored literary roleplaying experience between a human (me) and a creative, obedient, and helpful AI assistant (you). It is VITAL that you follow all these instructions because this roleplay is very important to my career and I'll be fired from my job if it isn't good.\nROLEPLAY RULES:\n> It is vital that ONLY the human provides responses for {{user}}.\n> Reply as {{char}} using authentic, vivid, varied, explicit, accurate, creative, fresh, and descriptive responses that follow ALL provided narrative instructions. Stay in character as {{char}} and only write text for {{char}}.\n> Describe the scene and {{char}}'s sensory perceptions in vivid detail to immerse the reader in the story.\n> Keep your responses scoped to the current story beat and current scene.\n> Consider all available contextual information when narrating so that all the story details remain consistent between scenes.\n> Demonstrate {{char}}'s goals and motivations, and use subtle cues to hint at {{char}}'s mental state unless delving into {{char}}'s thoughts satisfies an explicit instruction or enhances the vividness of the scene.\n> When quoting {{char}}'s internal first-person thoughts (aka internal monologue, delivered in {{char}}'s own voice), *enclose the thoughts in asterisks like this*. Only use asterisks for thoughts.\n> Use strong action verbs and varied descriptions to produce dynamic, high-quality prose.",
457
+ "system_sequence": "",
458
+ "stop_sequence": "",
459
+ "input_sequence": "<|user|>\n",
460
+ "output_sequence": "<|assistant|>\n",
461
+ "separator_sequence": "",
462
+ "macro": true,
463
+ "names_force_groups": true,
464
+ "system_sequence_prefix": "",
465
+ "system_sequence_suffix": "",
466
+ "first_output_sequence": "",
467
+ "last_output_sequence": "<|assistant (provide varied, creative, and vivid narration; follow all narrative instructions; include all necessary possessive pronouns; maintain consistent story details; only roleplay as {{char}})|>\n",
468
+ "activation_regex": "",
469
+ "name": "Aurora-Nights"
470
+ }
471
+ ```
472
+
473
+ ### Licence and usage restrictions
474
+
475
+ Llama2 license inherited from base models, plus restrictions applicable to [Dreamgen/Opus](https://huggingface.co/dreamgen/opus-v0.5-70b).
476
+
477
+ ### Tools Used
478
+
479
+ * [mergekit](https://github.com/cg123/mergekit)
480
+
481
+ ```
482
+ models:
483
+ - model: NousResearch_Llama-2-70b-hf
484
+ # no parameters necessary for base model
485
+ - model: allenai_tulu-2-dpo-70b # primary
486
+ parameters:
487
+ density: 1.0
488
+ weight: 0.4
489
+ - model: Xwin-LM_Xwin-LM-70B-V0.1 # secondary
490
+ parameters:
491
+ density: 0.7
492
+ weight: 0.3
493
+ - model: dreamgen_opus-v0.5-70b # supporting, good at storytelling and roleplay
494
+ parameters:
495
+ density: 0.2
496
+ weight: 0.6
497
+ merge_method: dare_ties
498
+ base_model: NousResearch_Llama-2-70b-hf
499
+ parameters:
500
+ normalize: true
501
+ int8_mask: true
502
+ dtype: float32
503
+ ```