TheBloke commited on
Commit
526ad5b
1 Parent(s): fe340ae

Upload new GPTQs with varied parameters

Browse files
Files changed (1) hide show
  1. README.md +76 -35
README.md CHANGED
@@ -9,7 +9,7 @@ license: other
9
  </div>
10
  <div style="display: flex; justify-content: space-between; width: 100%;">
11
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
- <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
13
  </div>
14
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
@@ -19,50 +19,83 @@ license: other
19
 
20
  # James WYang's BigTrans GPTQ
21
 
22
- These files are GPTQ 4bit model files for [James WYang's BigTrans](https://huggingface.co/James-WYang/BigTrans).
23
 
24
- It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
 
 
25
 
26
  ## Repositories available
27
 
28
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/BigTrans-13B-GPTQ)
29
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/BigTrans-13B-GGML)
30
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/James-WYang/BigTrans)
31
 
32
- ## Prompt format: Alpaca
33
 
34
  ```
35
- ### Instruction: please translate the following into French: Large language models are the future
 
 
 
36
  ### Response:
 
37
  ```
38
 
39
- ## How to easily download and use this model in text-generation-webui
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
- Please make sure you're using the latest version of text-generation-webui
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  1. Click the **Model tab**.
44
  2. Under **Download custom model or LoRA**, enter `TheBloke/BigTrans-13B-GPTQ`.
 
 
45
  3. Click **Download**.
46
  4. The model will start downloading. Once it's finished it will say "Done"
47
  5. In the top left, click the refresh icon next to **Model**.
48
  6. In the **Model** dropdown, choose the model you just downloaded: `BigTrans-13B-GPTQ`
49
  7. The model will automatically load, and is now ready for use!
50
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
51
- * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
52
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
53
 
54
  ## How to use this GPTQ model from Python code
55
 
56
  First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
57
 
58
- `pip install auto-gptq`
59
 
60
  Then try the following example code:
61
 
62
  ```python
63
  from transformers import AutoTokenizer, pipeline, logging
64
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
65
- import argparse
66
 
67
  model_name_or_path = "TheBloke/BigTrans-13B-GPTQ"
68
  model_basename = "bigtrans-13b-GPTQ-4bit-128g.no-act.order"
@@ -72,17 +105,33 @@ use_triton = False
72
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
73
 
74
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
75
- model_basename=model_basename,
76
  use_safetensors=True,
77
- trust_remote_code=False,
78
  device="cuda:0",
79
  use_triton=use_triton,
80
  quantize_config=None)
81
 
82
- # Note: check the prompt template is correct for this model.
83
- prompt = "Please translate the following into French: AI is the future of everything"
84
- prompt_template=f'''### Instruction: {prompt}
85
- ### Response:'''
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
  print("\n\n*** Generate:")
88
 
@@ -109,26 +158,18 @@ pipe = pipeline(
109
  print(pipe(prompt_template)[0]['generated_text'])
110
  ```
111
 
112
- ## Provided files
113
-
114
- **bigtrans-13b-GPTQ-4bit-128g.no-act.order.safetensors**
115
-
116
- This will work with AutoGPTQ and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
117
 
118
- It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
119
 
120
- * `bigtrans-13b-GPTQ-4bit-128g.no-act.order.safetensors`
121
- * Works with AutoGPTQ in CUDA or Triton modes.
122
- * Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
123
- * Works with text-generation-webui, including one-click-installers.
124
- * Parameters: Groupsize = 128. Act Order / desc_act = False.
125
 
126
  <!-- footer start -->
127
  ## Discord
128
 
129
  For further support, and discussions on these models and AI in general, join us at:
130
 
131
- [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
132
 
133
  ## Thanks, and how to contribute.
134
 
@@ -143,9 +184,9 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
143
  * Patreon: https://patreon.com/TheBlokeAI
144
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
145
 
146
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
147
 
148
- **Patreon special mentions**: vamX, K, Jonathan Leane, Lone Striker, Sean Connelly, Chris McCloskey, WelcomeToTheClub, Nikolai Manek, John Detwiler, Kalila, David Flickinger, Fen Risland, subjectnull, Johann-Peter Hartmann, Talal Aujan, John Villwock, senxiiz, Khalefa Al-Ahmad, Kevin Schuppel, Alps Aficionado, Derek Yates, Mano Prime, Nathan LeClaire, biorpg, trip7s trip, Asp the Wyvern, chris gileta, Iucharbius , Artur Olbinski, Ai Maven, Joseph William Delisle, Luke Pendergrass, Illia Dulskyi, Eugene Pentland, Ajan Kanaga, Willem Michiel, Space Cruiser, Pyrater, Preetika Verma, Junyu Yang, Oscar Rangel, Spiking Neurons AB, Pierre Kircher, webtim, Cory Kujawski, terasurfer , Trenton Dambrowitz, Gabriel Puliatti, Imad Khwaja, Luke.
149
 
150
  Thank you to all my generous patrons and donaters!
151
 
@@ -153,8 +194,8 @@ Thank you to all my generous patrons and donaters!
153
 
154
  # Original model card: James WYang's BigTrans
155
 
156
- # BigTrans: Augmenting Large Language Models with Multilingual Translation Capability over 100 Languages
157
- Large language models (LLMs) demonstrate promising translation performance among various natural languages. However, many LLMs especially the open-sourced ones, such as BLOOM and LLaMA, are English-dominant and support only dozens of natural languages, making the potential of LLMs on language translation less explored. In this work, we present BigTrans which adapts LLaMA that covers only 20 languages and enhances it with multilingual translation capability on more than 100 languages. BigTrans is built upon LLaMA-13B and it is optimized in three steps. First, we continue training LLaMA with massive Chinese monolingual data. Second, we continue training the model with a large-scale parallel dataset that covers 102 natural languages. Third, we instruct-tune the foundation model with multilingual translation instructions, leading to our BigTrans model. The preliminary experiments on multilingual translation show that BigTrans performs comparably with
158
- ChatGPT and Google Translate in many languages and even outperforms ChatGPT in 8 language pairs. We release the BigTrans model and hope it can advance the research progress.
159
 
160
- **More Details can be found at https://github.com/ZNLP/BigTrans and https://arxiv.org/abs/2305.18098**
 
9
  </div>
10
  <div style="display: flex; justify-content: space-between; width: 100%;">
11
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
13
  </div>
14
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
 
19
 
20
  # James WYang's BigTrans GPTQ
21
 
22
+ These files are GPTQ model files for [James WYang's BigTrans](https://huggingface.co/James-WYang/BigTrans).
23
 
24
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
25
+
26
+ These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
27
 
28
  ## Repositories available
29
 
30
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/BigTrans-13B-GPTQ)
31
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/BigTrans-13B-GGML)
32
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/James-WYang/BigTrans)
33
 
34
+ ## Prompt template: Alpaca
35
 
36
  ```
37
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
38
+
39
+ ### Instruction: {prompt}
40
+
41
  ### Response:
42
+
43
  ```
44
 
45
+ ## Provided files
46
+
47
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
48
+
49
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
50
+
51
+ | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
52
+ | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
53
+ | main | 4 | 128 | False | 7.90 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
54
+ | gptq-4bit-32g-actorder_True | 4 | 32 | 1 | 8.45 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
55
+ | gptq-4bit-64g-actorder_True | 4 | 64 | 1 | 7.95 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
56
+ | gptq-4bit-128g-actorder_True | 4 | 128 | 1 | 7.70 GB | True | AutoGPTQ | 4-bit, with Act Order androup size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
57
+ | gptq-8bit--1g-actorder_True | 8 | None | 1 | 13.80 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
58
+ | gptq-8bit-128g-actorder_False | 8 | 128 | 0 | 14.10 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
59
 
60
+ ## How to download from branches
61
+
62
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/BigTrans-13B-GPTQ:gptq-4bit-32g-actorder_True`
63
+ - With Git, you can clone a branch with:
64
+ ```
65
+ git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/BigTrans-13B-GPTQ`
66
+ ```
67
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
68
+
69
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
70
+
71
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
72
+
73
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
74
 
75
  1. Click the **Model tab**.
76
  2. Under **Download custom model or LoRA**, enter `TheBloke/BigTrans-13B-GPTQ`.
77
+ - To download from a specific branch, enter for example `TheBloke/BigTrans-13B-GPTQ:gptq-4bit-32g-actorder_True`
78
+ - see Provided Files above for the list of branches for each option.
79
  3. Click **Download**.
80
  4. The model will start downloading. Once it's finished it will say "Done"
81
  5. In the top left, click the refresh icon next to **Model**.
82
  6. In the **Model** dropdown, choose the model you just downloaded: `BigTrans-13B-GPTQ`
83
  7. The model will automatically load, and is now ready for use!
84
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
85
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
86
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
87
 
88
  ## How to use this GPTQ model from Python code
89
 
90
  First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
91
 
92
+ `GITHUB_ACTIONS=true pip install auto-gptq`
93
 
94
  Then try the following example code:
95
 
96
  ```python
97
  from transformers import AutoTokenizer, pipeline, logging
98
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
 
99
 
100
  model_name_or_path = "TheBloke/BigTrans-13B-GPTQ"
101
  model_basename = "bigtrans-13b-GPTQ-4bit-128g.no-act.order"
 
105
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
106
 
107
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
108
+ model_basename=model_basename
109
  use_safetensors=True,
110
+ trust_remote_code=True,
111
  device="cuda:0",
112
  use_triton=use_triton,
113
  quantize_config=None)
114
 
115
+ """
116
+ To download from a specific branch, use the revision parameter, as in this example:
117
+
118
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
119
+ revision="gptq-4bit-32g-actorder_True",
120
+ model_basename=model_basename,
121
+ use_safetensors=True,
122
+ trust_remote_code=True,
123
+ device="cuda:0",
124
+ quantize_config=None)
125
+ """
126
+
127
+ prompt = "Tell me about AI"
128
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
129
+
130
+ ### Instruction: {prompt}
131
+
132
+ ### Response:
133
+
134
+ '''
135
 
136
  print("\n\n*** Generate:")
137
 
 
158
  print(pipe(prompt_template)[0]['generated_text'])
159
  ```
160
 
161
+ ## Compatibility
 
 
 
 
162
 
163
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
164
 
165
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
 
166
 
167
  <!-- footer start -->
168
  ## Discord
169
 
170
  For further support, and discussions on these models and AI in general, join us at:
171
 
172
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
173
 
174
  ## Thanks, and how to contribute.
175
 
 
184
  * Patreon: https://patreon.com/TheBlokeAI
185
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
186
 
187
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
188
 
189
+ **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
190
 
191
  Thank you to all my generous patrons and donaters!
192
 
 
194
 
195
  # Original model card: James WYang's BigTrans
196
 
197
+ # BigTranslate: Augmenting Large Language Models with Multilingual Translation Capability over 100 Languages
198
+ Large language models (LLMs) demonstrate promising translation performance among various natural languages. However, many LLMs especially the open-sourced ones, such as BLOOM and LLaMA, are English-dominant and support only dozens of natural languages, making the potential of LLMs on language translation less explored. In this work, we present BigTranslate which adapts LLaMA that covers only 20 languages and enhances it with multilingual translation capability on more than 100 languages. BigTranslate is built upon LLaMA-13B and it is optimized in three steps. First, we continue training LLaMA with massive Chinese monolingual data. Second, we continue training the model with a large-scale parallel dataset that covers 102 natural languages. Third, we instruct-tune the foundation model with multilingual translation instructions, leading to our BigTranslate model. The preliminary experiments on multilingual translation show that BigTranslate performs comparably with
199
+ ChatGPT and Google Translate in many languages and even outperforms ChatGPT in 8 language pairs. We release the BigTranslate model and hope it can advance the research progress.
200
 
201
+ **More Details can be found at https://github.com/ZNLP/BigTranslate and https://arxiv.org/abs/2305.18098**