TheBloke commited on
Commit
3d89fb3
1 Parent(s): fa55c66

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +527 -0
README.md ADDED
@@ -0,0 +1,527 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: DiscoResearch/DiscoLM-120b
3
+ datasets:
4
+ - Open-Orca/SlimOrca-Dedup
5
+ - teknium/openhermes
6
+ - meta-math/MetaMathQA
7
+ - migtissera/Synthia-v1.3
8
+ - THUDM/AgentInstruct
9
+ - LeoLM/German_Songs
10
+ - LeoLM/German_Poems
11
+ - LeoLM/OpenSchnabeltier
12
+ - bjoernp/ultrachat_de
13
+ inference: false
14
+ language:
15
+ - en
16
+ library_name: transformers
17
+ license: llama2
18
+ model_creator: Disco Research
19
+ model_name: DiscoLM 120B
20
+ model_type: llama
21
+ pipeline_tag: text-generation
22
+ prompt_template: '<|im_start|>system
23
+
24
+ {system_message}<|im_end|>
25
+
26
+ <|im_start|>user
27
+
28
+ {prompt}<|im_end|>
29
+
30
+ <|im_start|>assistant
31
+
32
+ '
33
+ quantized_by: TheBloke
34
+ tags:
35
+ - goliath
36
+ - deutsch
37
+ - llama2
38
+ - discoresearch
39
+ ---
40
+ <!-- markdownlint-disable MD041 -->
41
+
42
+ <!-- header start -->
43
+ <!-- 200823 -->
44
+ <div style="width: auto; margin-left: auto; margin-right: auto">
45
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
46
+ </div>
47
+ <div style="display: flex; justify-content: space-between; width: 100%;">
48
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
49
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
50
+ </div>
51
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
52
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
53
+ </div>
54
+ </div>
55
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
56
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
57
+ <!-- header end -->
58
+
59
+ # DiscoLM 120B - AWQ
60
+ - Model creator: [Disco Research](https://huggingface.co/DiscoResearch)
61
+ - Original model: [DiscoLM 120B](https://huggingface.co/DiscoResearch/DiscoLM-120b)
62
+
63
+ <!-- description start -->
64
+ ## Description
65
+
66
+ This repo contains AWQ model files for [Disco Research's DiscoLM 120B](https://huggingface.co/DiscoResearch/DiscoLM-120b).
67
+
68
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
69
+
70
+
71
+ ### About AWQ
72
+
73
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
74
+
75
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
76
+
77
+ It is supported by:
78
+
79
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
80
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
81
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
82
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
83
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
84
+
85
+ <!-- description end -->
86
+ <!-- repositories-available start -->
87
+ ## Repositories available
88
+
89
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/DiscoLM-120b-AWQ)
90
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/DiscoLM-120b-GPTQ)
91
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/DiscoLM-120b-GGUF)
92
+ * [Disco Research's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/DiscoResearch/DiscoLM-120b)
93
+ <!-- repositories-available end -->
94
+
95
+ <!-- prompt-template start -->
96
+ ## Prompt template: ChatML
97
+
98
+ ```
99
+ <|im_start|>system
100
+ {system_message}<|im_end|>
101
+ <|im_start|>user
102
+ {prompt}<|im_end|>
103
+ <|im_start|>assistant
104
+
105
+ ```
106
+
107
+ <!-- prompt-template end -->
108
+
109
+
110
+ <!-- README_AWQ.md-provided-files start -->
111
+ ## Provided files, and AWQ parameters
112
+
113
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
114
+
115
+ Models are released as sharded safetensors files.
116
+
117
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
118
+ | ------ | ---- | -- | ----------- | ------- | ---- |
119
+ | [main](https://huggingface.co/TheBloke/DiscoLM-120b-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 61.96 GB
120
+
121
+ <!-- README_AWQ.md-provided-files end -->
122
+
123
+ <!-- README_AWQ.md-text-generation-webui start -->
124
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
125
+
126
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
127
+
128
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
129
+
130
+ 1. Click the **Model tab**.
131
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/DiscoLM-120b-AWQ`.
132
+ 3. Click **Download**.
133
+ 4. The model will start downloading. Once it's finished it will say "Done".
134
+ 5. In the top left, click the refresh icon next to **Model**.
135
+ 6. In the **Model** dropdown, choose the model you just downloaded: `DiscoLM-120b-AWQ`
136
+ 7. Select **Loader: AutoAWQ**.
137
+ 8. Click Load, and the model will load and is now ready for use.
138
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
139
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
140
+ <!-- README_AWQ.md-text-generation-webui end -->
141
+
142
+ <!-- README_AWQ.md-use-from-vllm start -->
143
+ ## Multi-user inference server: vLLM
144
+
145
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
146
+
147
+ - Please ensure you are using vLLM version 0.2 or later.
148
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
149
+
150
+ For example:
151
+
152
+ ```shell
153
+ python3 -m vllm.entrypoints.api_server --model TheBloke/DiscoLM-120b-AWQ --quantization awq --dtype auto
154
+ ```
155
+
156
+ - When using vLLM from Python code, again set `quantization=awq`.
157
+
158
+ For example:
159
+
160
+ ```python
161
+ from vllm import LLM, SamplingParams
162
+
163
+ prompts = [
164
+ "Tell me about AI",
165
+ "Write a story about llamas",
166
+ "What is 291 - 150?",
167
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
168
+ ]
169
+ prompt_template=f'''<|im_start|>system
170
+ {system_message}<|im_end|>
171
+ <|im_start|>user
172
+ {prompt}<|im_end|>
173
+ <|im_start|>assistant
174
+ '''
175
+
176
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
177
+
178
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
179
+
180
+ llm = LLM(model="TheBloke/DiscoLM-120b-AWQ", quantization="awq", dtype="auto")
181
+
182
+ outputs = llm.generate(prompts, sampling_params)
183
+
184
+ # Print the outputs.
185
+ for output in outputs:
186
+ prompt = output.prompt
187
+ generated_text = output.outputs[0].text
188
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
189
+ ```
190
+ <!-- README_AWQ.md-use-from-vllm start -->
191
+
192
+ <!-- README_AWQ.md-use-from-tgi start -->
193
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
194
+
195
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
196
+
197
+ Example Docker parameters:
198
+
199
+ ```shell
200
+ --model-id TheBloke/DiscoLM-120b-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
201
+ ```
202
+
203
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
204
+
205
+ ```shell
206
+ pip3 install huggingface-hub
207
+ ```
208
+
209
+ ```python
210
+ from huggingface_hub import InferenceClient
211
+
212
+ endpoint_url = "https://your-endpoint-url-here"
213
+
214
+ prompt = "Tell me about AI"
215
+ prompt_template=f'''<|im_start|>system
216
+ {system_message}<|im_end|>
217
+ <|im_start|>user
218
+ {prompt}<|im_end|>
219
+ <|im_start|>assistant
220
+ '''
221
+
222
+ client = InferenceClient(endpoint_url)
223
+ response = client.text_generation(prompt,
224
+ max_new_tokens=128,
225
+ do_sample=True,
226
+ temperature=0.7,
227
+ top_p=0.95,
228
+ top_k=40,
229
+ repetition_penalty=1.1)
230
+
231
+ print(f"Model output: ", response)
232
+ ```
233
+ <!-- README_AWQ.md-use-from-tgi end -->
234
+
235
+ <!-- README_AWQ.md-use-from-python start -->
236
+ ## Inference from Python code using Transformers
237
+
238
+ ### Install the necessary packages
239
+
240
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
241
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
242
+
243
+ ```shell
244
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
245
+ ```
246
+
247
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
248
+
249
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
250
+
251
+ ```shell
252
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
253
+ ```
254
+
255
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
256
+
257
+ ```shell
258
+ pip3 uninstall -y autoawq
259
+ git clone https://github.com/casper-hansen/AutoAWQ
260
+ cd AutoAWQ
261
+ pip3 install .
262
+ ```
263
+
264
+ ### Transformers example code (requires Transformers 4.35.0 and later)
265
+
266
+ ```python
267
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
268
+
269
+ model_name_or_path = "TheBloke/DiscoLM-120b-AWQ"
270
+
271
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
272
+ model = AutoModelForCausalLM.from_pretrained(
273
+ model_name_or_path,
274
+ low_cpu_mem_usage=True,
275
+ device_map="cuda:0"
276
+ )
277
+
278
+ # Using the text streamer to stream output one token at a time
279
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
280
+
281
+ prompt = "Tell me about AI"
282
+ prompt_template=f'''<|im_start|>system
283
+ {system_message}<|im_end|>
284
+ <|im_start|>user
285
+ {prompt}<|im_end|>
286
+ <|im_start|>assistant
287
+ '''
288
+
289
+ # Convert prompt to tokens
290
+ tokens = tokenizer(
291
+ prompt_template,
292
+ return_tensors='pt'
293
+ ).input_ids.cuda()
294
+
295
+ generation_params = {
296
+ "do_sample": True,
297
+ "temperature": 0.7,
298
+ "top_p": 0.95,
299
+ "top_k": 40,
300
+ "max_new_tokens": 512,
301
+ "repetition_penalty": 1.1
302
+ }
303
+
304
+ # Generate streamed output, visible one token at a time
305
+ generation_output = model.generate(
306
+ tokens,
307
+ streamer=streamer,
308
+ **generation_params
309
+ )
310
+
311
+ # Generation without a streamer, which will include the prompt in the output
312
+ generation_output = model.generate(
313
+ tokens,
314
+ **generation_params
315
+ )
316
+
317
+ # Get the tokens from the output, decode them, print them
318
+ token_output = generation_output[0]
319
+ text_output = tokenizer.decode(token_output)
320
+ print("model.generate output: ", text_output)
321
+
322
+ # Inference is also possible via Transformers' pipeline
323
+ from transformers import pipeline
324
+
325
+ pipe = pipeline(
326
+ "text-generation",
327
+ model=model,
328
+ tokenizer=tokenizer,
329
+ **generation_params
330
+ )
331
+
332
+ pipe_output = pipe(prompt_template)[0]['generated_text']
333
+ print("pipeline output: ", pipe_output)
334
+
335
+ ```
336
+ <!-- README_AWQ.md-use-from-python end -->
337
+
338
+ <!-- README_AWQ.md-compatibility start -->
339
+ ## Compatibility
340
+
341
+ The files provided are tested to work with:
342
+
343
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
344
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
345
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
346
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
347
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
348
+
349
+ <!-- README_AWQ.md-compatibility end -->
350
+
351
+ <!-- footer start -->
352
+ <!-- 200823 -->
353
+ ## Discord
354
+
355
+ For further support, and discussions on these models and AI in general, join us at:
356
+
357
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
358
+
359
+ ## Thanks, and how to contribute
360
+
361
+ Thanks to the [chirper.ai](https://chirper.ai) team!
362
+
363
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
364
+
365
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
366
+
367
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
368
+
369
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
370
+
371
+ * Patreon: https://patreon.com/TheBlokeAI
372
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
373
+
374
+ **Special thanks to**: Aemon Algiz.
375
+
376
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
377
+
378
+
379
+ Thank you to all my generous patrons and donaters!
380
+
381
+ And thank you again to a16z for their generous grant.
382
+
383
+ <!-- footer end -->
384
+
385
+ # Original model card: Disco Research's DiscoLM 120B
386
+
387
+
388
+
389
+ ![EM Logo](https://raw.githubusercontent.com/jphme/jpdus.github.io/master/images/discoresearch.webp)
390
+
391
+ # DiscoLM 120b (Alpha)
392
+
393
+ **DiscoLM 120b (Alpha)** is an experimental 120b model based on [Alpindale´s Goliath 120b](https://huggingface.co/alpindale/goliath-120b), a merge of different Llama2-70b models, and further finetuned on a dataset of some the most popular open-source instruction sets.
394
+ Disco 120b is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was trained by [Björn Plüster](https://huggingface.co/bjoernp).
395
+
396
+ The model was trained with compute provided by [HessianAI](https://hessian.ai/) - we are very grateful for their support; please check out their wesbite and projects!
397
+
398
+ <img src="https://hessian.ai/wp-content/themes/hessianai/img/hessian-ai-logo.svg" width="120">
399
+
400
+ ## Table of Contents
401
+
402
+ 1. [Download](#download)
403
+ 2. [Benchmarks](#benchmarks)
404
+ 3. [Prompt Format](#prompt-format)
405
+ 4. [Dataset](#dataset)
406
+ 5. [Acknowledgements](#acknowledgements)
407
+ 6. [Contact](#contact)
408
+ 7. [About DiscoResearch](#about-discoresearch)
409
+ 8. [Disclaimer](#disclaimer)
410
+
411
+ ## Download
412
+
413
+ | Huggingface | GPTQ | GGUF | AWQ | *Base Model* |
414
+ |-------|-------|-------|-------|-------|
415
+ | [Link](https://huggingface.co/DiscoResearch/DiscoLM-120b) | soon | soon | soon | [Goliath 120b](https://huggingface.co/alpindale/goliath-120b) |
416
+
417
+ ## Benchmarks
418
+
419
+ ### Hugginface Leaderboard
420
+
421
+ This models is still an early Alpha and we can't guarantee that there isn't any contamination.
422
+ However, the average of **72.15** would earn the #2 spot on the HF leaderboard at the time of writing and the highest score for a >70b model yet.
423
+
424
+ | Metric | Value |
425
+ |-----------------------|-------|
426
+ | ARC (25-shot) | 69.54 |
427
+ | HellaSwag (10-shot) | 86.49 |
428
+ | MMLU (5-shot) | 70.32 |
429
+ | TruthfulQA (0-shot) | 61.42 |
430
+ | Winogrande (5-shot) | 83.03 |
431
+ | GSM8k (5-shot) | 68.39 |
432
+ | **Avg.** | **72.15** |
433
+
434
+ We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
435
+
436
+ ### FastEval
437
+
438
+ | Metric | Value |
439
+ |-----------------------|-------|
440
+ | GSM8K | 81.2 |
441
+ | Math | 22.3 |
442
+ | BBH | 72.9 |
443
+ | MMLU | 67.9 |
444
+ | **Avg.** | **53.3** |
445
+
446
+ ### MTBench
447
+
448
+ ```json
449
+ {
450
+ "first_turn": 8.45,
451
+ "second_turn": 7.45,
452
+ "categories": {
453
+ "writing": 9.4,
454
+ "roleplay": 8.65,
455
+ "reasoning": 6.85,
456
+ "math": 5.55,
457
+ "coding": 4.95,
458
+ "extraction": 9.15,
459
+ "stem": 9.225,
460
+ "humanities": 9.825
461
+ },
462
+ "average": 7.95
463
+ }
464
+ ```
465
+
466
+ ## Prompt Format
467
+
468
+ This model follows the ChatML format:
469
+
470
+ ```
471
+ <|im_start|>system
472
+ You are DiscoLM, a helpful assistant.
473
+ <|im_end|>
474
+ <|im_start|>user
475
+ Please tell me possible reasons to call a research collective "Disco Research"<|im_end|>
476
+ <|im_start|>assistant
477
+ ```
478
+
479
+ This formatting is also available via a pre-defined Transformers chat template, which means that lists of messages can be formatted for you with the apply_chat_template() method:
480
+
481
+ ```python
482
+ chat = [
483
+ {"role": "system", "content": "You are DiscoLM, a helpful assistant."},
484
+ {"role": "user", "content": "Please tell me possible reasons to call a research collective Disco Research"}
485
+ ]
486
+ tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
487
+ ```
488
+
489
+ If you use `tokenize=True` and `return_tensors="pt"` instead, then you will get a tokenized and formatted conversation ready to pass to `model.generate()`.
490
+
491
+ ## Dataset
492
+
493
+ The dataset curation for DiscoLM 120b followed a "brute force"/"PoC" approach, as one goal was to see whether a 120b model can "absorb" more instruction data than a 70b model.
494
+
495
+ The following datasets were used for training DiscoLM 120b:
496
+
497
+ * [SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup)
498
+ * [OpenPlatypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
499
+ * [OpenHermes](https://huggingface.co/datasets/teknium/openhermes)
500
+ * [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
501
+ * [UltraChat](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
502
+ * [Synthia v.1.3](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
503
+ * [AgentInstruct](https://huggingface.co/datasets/THUDM/AgentInstruct)
504
+
505
+ Many thanks for all dataset providers/curators!
506
+
507
+ ## Contact
508
+
509
+ Best way to reach us is on our [Discord](https://discord.gg/4pAqJP7W).
510
+
511
+ ## About DiscoResearch
512
+
513
+ DiscoResearch is an aspiring open research community. Disco should be a place where researchers from many communities can come together to combine their expertise and create innovative and groundbreaking LLMs. Come join our Discord, share your opinions and ideas, and advance open LLM research with us!
514
+
515
+ ## Acknowledgements
516
+
517
+ Disco 120b is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was trained by [Björn Plüster](https://huggingface.co/bjoernp). [Jan Harries](https://huggingface.co/jphme) helped with technical adivce, logistics and the Model Card and [AutoMeta](https://huggingface.co/Alignment-Lab-AI) also provided helpful technical adivce.
518
+ The model was trained with compute provided by [HessianAI](https://hessian.ai/) - many thanks in particular to [Patrick Schramowski](https://huggingface.co/PSaiml) for his support.
519
+
520
+ We are standing on the shoulders of giants; many thanks in no particular order to [alpindale](https://huggingface.co/alpindale) for Goliath 120b (with important contributions by [Charles Goddard](https://huggingface.co/chargoddard) and [Undi95](https://huggingface.co/Undi95)), [TheBloke](https://huggingface.co/TheBloke) for providing quantized versions, [winglian](https://huggingface.co/winglian) for Axolotl which was used to train the model and the SlimOrca dataset, [garage-bAInd](https://huggingface.co/garage-bAInd), [Teknium](https://huggingface.co/teknium), [Migel Tissera](https://huggingface.co/migtissera), [MetaMath](https://huggingface.co/meta-math) for their great datasets (please contact us if we forgot to mention you here!).
521
+
522
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
523
+
524
+ ## Disclaimer
525
+
526
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model.
527
+ This model should only be used for research purposes. The original Llama2 license and all restrictions of datasets used to train this model apply.