TheBloke commited on
Commit
51ca794
1 Parent(s): 12cae21

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +538 -0
README.md ADDED
@@ -0,0 +1,538 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: DiscoResearch/DiscoLM-120b
3
+ datasets:
4
+ - Open-Orca/SlimOrca-Dedup
5
+ - teknium/openhermes
6
+ - meta-math/MetaMathQA
7
+ - migtissera/Synthia-v1.3
8
+ - THUDM/AgentInstruct
9
+ - LeoLM/German_Songs
10
+ - LeoLM/German_Poems
11
+ - LeoLM/OpenSchnabeltier
12
+ - bjoernp/ultrachat_de
13
+ inference: false
14
+ language:
15
+ - en
16
+ library_name: transformers
17
+ license: llama2
18
+ model_creator: Disco Research
19
+ model_name: DiscoLM 120B
20
+ model_type: llama
21
+ pipeline_tag: text-generation
22
+ prompt_template: '<|im_start|>system
23
+
24
+ {system_message}<|im_end|>
25
+
26
+ <|im_start|>user
27
+
28
+ {prompt}<|im_end|>
29
+
30
+ <|im_start|>assistant
31
+
32
+ '
33
+ quantized_by: TheBloke
34
+ tags:
35
+ - goliath
36
+ - deutsch
37
+ - llama2
38
+ - discoresearch
39
+ ---
40
+ <!-- markdownlint-disable MD041 -->
41
+
42
+ <!-- header start -->
43
+ <!-- 200823 -->
44
+ <div style="width: auto; margin-left: auto; margin-right: auto">
45
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
46
+ </div>
47
+ <div style="display: flex; justify-content: space-between; width: 100%;">
48
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
49
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
50
+ </div>
51
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
52
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
53
+ </div>
54
+ </div>
55
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
56
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
57
+ <!-- header end -->
58
+
59
+ # DiscoLM 120B - GPTQ
60
+ - Model creator: [Disco Research](https://huggingface.co/DiscoResearch)
61
+ - Original model: [DiscoLM 120B](https://huggingface.co/DiscoResearch/DiscoLM-120b)
62
+
63
+ <!-- description start -->
64
+ # Description
65
+
66
+ This repo contains GPTQ model files for [Disco Research's DiscoLM 120B](https://huggingface.co/DiscoResearch/DiscoLM-120b).
67
+
68
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
69
+
70
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
71
+
72
+ <!-- description end -->
73
+ <!-- repositories-available start -->
74
+ ## Repositories available
75
+
76
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/DiscoLM-120b-AWQ)
77
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/DiscoLM-120b-GPTQ)
78
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/DiscoLM-120b-GGUF)
79
+ * [Disco Research's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/DiscoResearch/DiscoLM-120b)
80
+ <!-- repositories-available end -->
81
+
82
+ <!-- prompt-template start -->
83
+ ## Prompt template: ChatML
84
+
85
+ ```
86
+ <|im_start|>system
87
+ {system_message}<|im_end|>
88
+ <|im_start|>user
89
+ {prompt}<|im_end|>
90
+ <|im_start|>assistant
91
+
92
+ ```
93
+
94
+ <!-- prompt-template end -->
95
+
96
+
97
+
98
+ <!-- README_GPTQ.md-compatible clients start -->
99
+ ## Known compatible clients / servers
100
+
101
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
102
+
103
+ These GPTQ models are known to work in the following inference servers/webuis.
104
+
105
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
106
+ - [KoboldAI United](https://github.com/henk717/koboldai)
107
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
108
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
109
+
110
+ This may not be a complete list; if you know of others, please let me know!
111
+ <!-- README_GPTQ.md-compatible clients end -->
112
+
113
+ <!-- README_GPTQ.md-provided-files start -->
114
+ ## Provided files, and GPTQ parameters
115
+
116
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
117
+
118
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
119
+
120
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
121
+
122
+ <details>
123
+ <summary>Explanation of GPTQ parameters</summary>
124
+
125
+ - Bits: The bit size of the quantised model.
126
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
127
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
128
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
129
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
130
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
131
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
132
+
133
+ </details>
134
+
135
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
136
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
137
+ | [main](https://huggingface.co/TheBloke/DiscoLM-120b-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 59.76 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
138
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/DiscoLM-120b-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 62.02 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
139
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/DiscoLM-120b-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 45.11 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
140
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/DiscoLM-120b-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 47.25 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
141
+
142
+ <!-- README_GPTQ.md-provided-files end -->
143
+
144
+ <!-- README_GPTQ.md-download-from-branches start -->
145
+ ## How to download, including from branches
146
+
147
+ ### In text-generation-webui
148
+
149
+ To download from the `main` branch, enter `TheBloke/DiscoLM-120b-GPTQ` in the "Download model" box.
150
+
151
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/DiscoLM-120b-GPTQ:gptq-4bit-128g-actorder_True`
152
+
153
+ ### From the command line
154
+
155
+ I recommend using the `huggingface-hub` Python library:
156
+
157
+ ```shell
158
+ pip3 install huggingface-hub
159
+ ```
160
+
161
+ To download the `main` branch to a folder called `DiscoLM-120b-GPTQ`:
162
+
163
+ ```shell
164
+ mkdir DiscoLM-120b-GPTQ
165
+ huggingface-cli download TheBloke/DiscoLM-120b-GPTQ --local-dir DiscoLM-120b-GPTQ --local-dir-use-symlinks False
166
+ ```
167
+
168
+ To download from a different branch, add the `--revision` parameter:
169
+
170
+ ```shell
171
+ mkdir DiscoLM-120b-GPTQ
172
+ huggingface-cli download TheBloke/DiscoLM-120b-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir DiscoLM-120b-GPTQ --local-dir-use-symlinks False
173
+ ```
174
+
175
+ <details>
176
+ <summary>More advanced huggingface-cli download usage</summary>
177
+
178
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
179
+
180
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
181
+
182
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
183
+
184
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
185
+
186
+ ```shell
187
+ pip3 install hf_transfer
188
+ ```
189
+
190
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
191
+
192
+ ```shell
193
+ mkdir DiscoLM-120b-GPTQ
194
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/DiscoLM-120b-GPTQ --local-dir DiscoLM-120b-GPTQ --local-dir-use-symlinks False
195
+ ```
196
+
197
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
198
+ </details>
199
+
200
+ ### With `git` (**not** recommended)
201
+
202
+ To clone a specific branch with `git`, use a command like this:
203
+
204
+ ```shell
205
+ git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/DiscoLM-120b-GPTQ
206
+ ```
207
+
208
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
209
+
210
+ <!-- README_GPTQ.md-download-from-branches end -->
211
+ <!-- README_GPTQ.md-text-generation-webui start -->
212
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
213
+
214
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
215
+
216
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
217
+
218
+ 1. Click the **Model tab**.
219
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/DiscoLM-120b-GPTQ`.
220
+
221
+ - To download from a specific branch, enter for example `TheBloke/DiscoLM-120b-GPTQ:gptq-4bit-128g-actorder_True`
222
+ - see Provided Files above for the list of branches for each option.
223
+
224
+ 3. Click **Download**.
225
+ 4. The model will start downloading. Once it's finished it will say "Done".
226
+ 5. In the top left, click the refresh icon next to **Model**.
227
+ 6. In the **Model** dropdown, choose the model you just downloaded: `DiscoLM-120b-GPTQ`
228
+ 7. The model will automatically load, and is now ready for use!
229
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
230
+
231
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
232
+
233
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
234
+
235
+ <!-- README_GPTQ.md-text-generation-webui end -->
236
+
237
+ <!-- README_GPTQ.md-use-from-tgi start -->
238
+ ## Serving this model from Text Generation Inference (TGI)
239
+
240
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
241
+
242
+ Example Docker parameters:
243
+
244
+ ```shell
245
+ --model-id TheBloke/DiscoLM-120b-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
246
+ ```
247
+
248
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
249
+
250
+ ```shell
251
+ pip3 install huggingface-hub
252
+ ```
253
+
254
+ ```python
255
+ from huggingface_hub import InferenceClient
256
+
257
+ endpoint_url = "https://your-endpoint-url-here"
258
+
259
+ prompt = "Tell me about AI"
260
+ prompt_template=f'''<|im_start|>system
261
+ {system_message}<|im_end|>
262
+ <|im_start|>user
263
+ {prompt}<|im_end|>
264
+ <|im_start|>assistant
265
+ '''
266
+
267
+ client = InferenceClient(endpoint_url)
268
+ response = client.text_generation(prompt,
269
+ max_new_tokens=128,
270
+ do_sample=True,
271
+ temperature=0.7,
272
+ top_p=0.95,
273
+ top_k=40,
274
+ repetition_penalty=1.1)
275
+
276
+ print(f"Model output: {response}")
277
+ ```
278
+ <!-- README_GPTQ.md-use-from-tgi end -->
279
+ <!-- README_GPTQ.md-use-from-python start -->
280
+ ## Python code example: inference from this GPTQ model
281
+
282
+ ### Install the necessary packages
283
+
284
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
285
+
286
+ ```shell
287
+ pip3 install --upgrade transformers optimum
288
+ # If using PyTorch 2.1 + CUDA 12.x:
289
+ pip3 install --upgrade auto-gptq
290
+ # or, if using PyTorch 2.1 + CUDA 11.x:
291
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
292
+ ```
293
+
294
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
295
+
296
+ ```shell
297
+ pip3 uninstall -y auto-gptq
298
+ git clone https://github.com/PanQiWei/AutoGPTQ
299
+ cd AutoGPTQ
300
+ git checkout v0.5.1
301
+ pip3 install .
302
+ ```
303
+
304
+ ### Example Python code
305
+
306
+ ```python
307
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
308
+
309
+ model_name_or_path = "TheBloke/DiscoLM-120b-GPTQ"
310
+ # To use a different branch, change revision
311
+ # For example: revision="gptq-4bit-128g-actorder_True"
312
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
313
+ device_map="auto",
314
+ trust_remote_code=False,
315
+ revision="main")
316
+
317
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
318
+
319
+ prompt = "Tell me about AI"
320
+ prompt_template=f'''<|im_start|>system
321
+ {system_message}<|im_end|>
322
+ <|im_start|>user
323
+ {prompt}<|im_end|>
324
+ <|im_start|>assistant
325
+ '''
326
+
327
+ print("\n\n*** Generate:")
328
+
329
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
330
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
331
+ print(tokenizer.decode(output[0]))
332
+
333
+ # Inference can also be done using transformers' pipeline
334
+
335
+ print("*** Pipeline:")
336
+ pipe = pipeline(
337
+ "text-generation",
338
+ model=model,
339
+ tokenizer=tokenizer,
340
+ max_new_tokens=512,
341
+ do_sample=True,
342
+ temperature=0.7,
343
+ top_p=0.95,
344
+ top_k=40,
345
+ repetition_penalty=1.1
346
+ )
347
+
348
+ print(pipe(prompt_template)[0]['generated_text'])
349
+ ```
350
+ <!-- README_GPTQ.md-use-from-python end -->
351
+
352
+ <!-- README_GPTQ.md-compatibility start -->
353
+ ## Compatibility
354
+
355
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
356
+
357
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
358
+
359
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
360
+ <!-- README_GPTQ.md-compatibility end -->
361
+
362
+ <!-- footer start -->
363
+ <!-- 200823 -->
364
+ ## Discord
365
+
366
+ For further support, and discussions on these models and AI in general, join us at:
367
+
368
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
369
+
370
+ ## Thanks, and how to contribute
371
+
372
+ Thanks to the [chirper.ai](https://chirper.ai) team!
373
+
374
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
375
+
376
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
377
+
378
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
379
+
380
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
381
+
382
+ * Patreon: https://patreon.com/TheBlokeAI
383
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
384
+
385
+ **Special thanks to**: Aemon Algiz.
386
+
387
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
388
+
389
+
390
+ Thank you to all my generous patrons and donaters!
391
+
392
+ And thank you again to a16z for their generous grant.
393
+
394
+ <!-- footer end -->
395
+
396
+ # Original model card: Disco Research's DiscoLM 120B
397
+
398
+
399
+
400
+ ![EM Logo](https://raw.githubusercontent.com/jphme/jpdus.github.io/master/images/discoresearch.webp)
401
+
402
+ # DiscoLM 120b (Alpha)
403
+
404
+ **DiscoLM 120b (Alpha)** is an experimental 120b model based on [Alpindale´s Goliath 120b](https://huggingface.co/alpindale/goliath-120b), a merge of different Llama2-70b models, and further finetuned on a dataset of some the most popular open-source instruction sets.
405
+ Disco 120b is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was trained by [Björn Plüster](https://huggingface.co/bjoernp).
406
+
407
+ The model was trained with compute provided by [HessianAI](https://hessian.ai/) - we are very grateful for their support; please check out their wesbite and projects!
408
+
409
+ <img src="https://hessian.ai/wp-content/themes/hessianai/img/hessian-ai-logo.svg" width="120">
410
+
411
+ ## Table of Contents
412
+
413
+ 1. [Download](#download)
414
+ 2. [Benchmarks](#benchmarks)
415
+ 3. [Prompt Format](#prompt-format)
416
+ 4. [Dataset](#dataset)
417
+ 5. [Acknowledgements](#acknowledgements)
418
+ 6. [Contact](#contact)
419
+ 7. [About DiscoResearch](#about-discoresearch)
420
+ 8. [Disclaimer](#disclaimer)
421
+
422
+ ## Download
423
+
424
+ | Huggingface | GPTQ | GGUF | AWQ | *Base Model* |
425
+ |-------|-------|-------|-------|-------|
426
+ | [Link](https://huggingface.co/DiscoResearch/DiscoLM-120b) | soon | soon | soon | [Goliath 120b](https://huggingface.co/alpindale/goliath-120b) |
427
+
428
+ ## Benchmarks
429
+
430
+ ### Hugginface Leaderboard
431
+
432
+ This models is still an early Alpha and we can't guarantee that there isn't any contamination.
433
+ However, the average of **72.15** would earn the #2 spot on the HF leaderboard at the time of writing and the highest score for a >70b model yet.
434
+
435
+ | Metric | Value |
436
+ |-----------------------|-------|
437
+ | ARC (25-shot) | 69.54 |
438
+ | HellaSwag (10-shot) | 86.49 |
439
+ | MMLU (5-shot) | 70.32 |
440
+ | TruthfulQA (0-shot) | 61.42 |
441
+ | Winogrande (5-shot) | 83.03 |
442
+ | GSM8k (5-shot) | 68.39 |
443
+ | **Avg.** | **72.15** |
444
+
445
+ We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
446
+
447
+ ### FastEval
448
+
449
+ | Metric | Value |
450
+ |-----------------------|-------|
451
+ | GSM8K | 81.2 |
452
+ | Math | 22.3 |
453
+ | BBH | 72.9 |
454
+ | MMLU | 67.9 |
455
+ | **Avg.** | **53.3** |
456
+
457
+ ### MTBench
458
+
459
+ ```json
460
+ {
461
+ "first_turn": 8.45,
462
+ "second_turn": 7.45,
463
+ "categories": {
464
+ "writing": 9.4,
465
+ "roleplay": 8.65,
466
+ "reasoning": 6.85,
467
+ "math": 5.55,
468
+ "coding": 4.95,
469
+ "extraction": 9.15,
470
+ "stem": 9.225,
471
+ "humanities": 9.825
472
+ },
473
+ "average": 7.95
474
+ }
475
+ ```
476
+
477
+ ## Prompt Format
478
+
479
+ This model follows the ChatML format:
480
+
481
+ ```
482
+ <|im_start|>system
483
+ You are DiscoLM, a helpful assistant.
484
+ <|im_end|>
485
+ <|im_start|>user
486
+ Please tell me possible reasons to call a research collective "Disco Research"<|im_end|>
487
+ <|im_start|>assistant
488
+ ```
489
+
490
+ This formatting is also available via a pre-defined Transformers chat template, which means that lists of messages can be formatted for you with the apply_chat_template() method:
491
+
492
+ ```python
493
+ chat = [
494
+ {"role": "system", "content": "You are DiscoLM, a helpful assistant."},
495
+ {"role": "user", "content": "Please tell me possible reasons to call a research collective Disco Research"}
496
+ ]
497
+ tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
498
+ ```
499
+
500
+ If you use `tokenize=True` and `return_tensors="pt"` instead, then you will get a tokenized and formatted conversation ready to pass to `model.generate()`.
501
+
502
+ ## Dataset
503
+
504
+ The dataset curation for DiscoLM 120b followed a "brute force"/"PoC" approach, as one goal was to see whether a 120b model can "absorb" more instruction data than a 70b model.
505
+
506
+ The following datasets were used for training DiscoLM 120b:
507
+
508
+ * [SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup)
509
+ * [OpenPlatypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
510
+ * [OpenHermes](https://huggingface.co/datasets/teknium/openhermes)
511
+ * [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
512
+ * [UltraChat](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
513
+ * [Synthia v.1.3](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
514
+ * [AgentInstruct](https://huggingface.co/datasets/THUDM/AgentInstruct)
515
+
516
+ Many thanks for all dataset providers/curators!
517
+
518
+ ## Contact
519
+
520
+ Best way to reach us is on our [Discord](https://discord.gg/4pAqJP7W).
521
+
522
+ ## About DiscoResearch
523
+
524
+ DiscoResearch is an aspiring open research community. Disco should be a place where researchers from many communities can come together to combine their expertise and create innovative and groundbreaking LLMs. Come join our Discord, share your opinions and ideas, and advance open LLM research with us!
525
+
526
+ ## Acknowledgements
527
+
528
+ Disco 120b is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was trained by [Björn Plüster](https://huggingface.co/bjoernp). [Jan Harries](https://huggingface.co/jphme) helped with technical adivce, logistics and the Model Card and [AutoMeta](https://huggingface.co/Alignment-Lab-AI) also provided helpful technical adivce.
529
+ The model was trained with compute provided by [HessianAI](https://hessian.ai/) - many thanks in particular to [Patrick Schramowski](https://huggingface.co/PSaiml) for his support.
530
+
531
+ We are standing on the shoulders of giants; many thanks in no particular order to [alpindale](https://huggingface.co/alpindale) for Goliath 120b (with important contributions by [Charles Goddard](https://huggingface.co/chargoddard) and [Undi95](https://huggingface.co/Undi95)), [TheBloke](https://huggingface.co/TheBloke) for providing quantized versions, [winglian](https://huggingface.co/winglian) for Axolotl which was used to train the model and the SlimOrca dataset, [garage-bAInd](https://huggingface.co/garage-bAInd), [Teknium](https://huggingface.co/teknium), [Migel Tissera](https://huggingface.co/migtissera), [MetaMath](https://huggingface.co/meta-math) for their great datasets (please contact us if we forgot to mention you here!).
532
+
533
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
534
+
535
+ ## Disclaimer
536
+
537
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model.
538
+ This model should only be used for research purposes. The original Llama2 license and all restrictions of datasets used to train this model apply.