TheBloke commited on
Commit
33a8108
1 Parent(s): 5d95b2b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -14
README.md CHANGED
@@ -1,13 +1,18 @@
1
  ---
 
2
  inference: false
3
  language:
4
  - en
5
  license: llama2
6
  model_creator: ddobokki
7
- model_link: https://huggingface.co/ddobokki/Llama-2-70b-orca-200k
8
  model_name: Llama 2 70B Orca 200k
9
  model_type: llama
10
  pipeline_tag: text-generation
 
 
 
 
 
11
  quantized_by: TheBloke
12
  tags:
13
  - llama-2
@@ -47,9 +52,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
47
  <!-- repositories-available start -->
48
  ## Repositories available
49
 
 
50
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GPTQ)
51
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GGUF)
52
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GGML)
53
  * [ddobokki's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ddobokki/Llama-2-70b-orca-200k)
54
  <!-- repositories-available end -->
55
 
@@ -64,6 +69,7 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
64
 
65
  <!-- prompt-template end -->
66
 
 
67
  <!-- README_GPTQ.md-provided-files start -->
68
  ## Provided files and GPTQ parameters
69
 
@@ -88,20 +94,20 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
88
 
89
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
90
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
91
- | [main](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
92
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
93
  | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
94
- | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
95
 
96
  <!-- README_GPTQ.md-provided-files end -->
97
 
98
  <!-- README_GPTQ.md-download-from-branches start -->
99
  ## How to download from branches
100
 
101
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Llama-2-70B-Orca-200k-GPTQ:gptq-4bit-32g-actorder_True`
102
  - With Git, you can clone a branch with:
103
  ```
104
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GPTQ
105
  ```
106
  - In Python Transformers code, the branch is the `revision` parameter; see below.
107
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -114,7 +120,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
114
 
115
  1. Click the **Model tab**.
116
  2. Under **Download custom model or LoRA**, enter `TheBloke/Llama-2-70B-Orca-200k-GPTQ`.
117
- - To download from a specific branch, enter for example `TheBloke/Llama-2-70B-Orca-200k-GPTQ:gptq-4bit-32g-actorder_True`
118
  - see Provided Files above for the list of branches for each option.
119
  3. Click **Download**.
120
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -162,10 +168,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
162
 
163
  model_name_or_path = "TheBloke/Llama-2-70B-Orca-200k-GPTQ"
164
  # To use a different branch, change revision
165
- # For example: revision="gptq-4bit-32g-actorder_True"
166
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
167
- torch_dtype=torch.float16,
168
  device_map="auto",
 
169
  revision="main")
170
 
171
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -179,7 +185,7 @@ prompt_template=f'''### Human: {prompt}
179
  print("\n\n*** Generate:")
180
 
181
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
182
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
183
  print(tokenizer.decode(output[0]))
184
 
185
  # Inference can also be done using transformers' pipeline
@@ -190,9 +196,11 @@ pipe = pipeline(
190
  model=model,
191
  tokenizer=tokenizer,
192
  max_new_tokens=512,
 
193
  temperature=0.7,
194
  top_p=0.95,
195
- repetition_penalty=1.15
 
196
  )
197
 
198
  print(pipe(prompt_template)[0]['generated_text'])
@@ -217,10 +225,12 @@ For further support, and discussions on these models and AI in general, join us
217
 
218
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
219
 
220
- ## Thanks, and how to contribute.
221
 
222
  Thanks to the [chirper.ai](https://chirper.ai) team!
223
 
 
 
224
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
225
 
226
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -232,7 +242,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
232
 
233
  **Special thanks to**: Aemon Algiz.
234
 
235
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
236
 
237
 
238
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/ddobokki/Llama-2-70b-orca-200k
3
  inference: false
4
  language:
5
  - en
6
  license: llama2
7
  model_creator: ddobokki
 
8
  model_name: Llama 2 70B Orca 200k
9
  model_type: llama
10
  pipeline_tag: text-generation
11
+ prompt_template: '### Human: {prompt}
12
+
13
+ ### Assistant:
14
+
15
+ '
16
  quantized_by: TheBloke
17
  tags:
18
  - llama-2
 
52
  <!-- repositories-available start -->
53
  ## Repositories available
54
 
55
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-AWQ)
56
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GPTQ)
57
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GGUF)
 
58
  * [ddobokki's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ddobokki/Llama-2-70b-orca-200k)
59
  <!-- repositories-available end -->
60
 
 
69
 
70
  <!-- prompt-template end -->
71
 
72
+
73
  <!-- README_GPTQ.md-provided-files start -->
74
  ## Provided files and GPTQ parameters
75
 
 
94
 
95
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
96
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
97
+ | [main](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
98
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
99
  | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
100
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
101
 
102
  <!-- README_GPTQ.md-provided-files end -->
103
 
104
  <!-- README_GPTQ.md-download-from-branches start -->
105
  ## How to download from branches
106
 
107
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Llama-2-70B-Orca-200k-GPTQ:main`
108
  - With Git, you can clone a branch with:
109
  ```
110
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/Llama-2-70B-Orca-200k-GPTQ
111
  ```
112
  - In Python Transformers code, the branch is the `revision` parameter; see below.
113
  <!-- README_GPTQ.md-download-from-branches end -->
 
120
 
121
  1. Click the **Model tab**.
122
  2. Under **Download custom model or LoRA**, enter `TheBloke/Llama-2-70B-Orca-200k-GPTQ`.
123
+ - To download from a specific branch, enter for example `TheBloke/Llama-2-70B-Orca-200k-GPTQ:main`
124
  - see Provided Files above for the list of branches for each option.
125
  3. Click **Download**.
126
  4. The model will start downloading. Once it's finished it will say "Done".
 
168
 
169
  model_name_or_path = "TheBloke/Llama-2-70B-Orca-200k-GPTQ"
170
  # To use a different branch, change revision
171
+ # For example: revision="main"
172
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
173
  device_map="auto",
174
+ trust_remote_code=False,
175
  revision="main")
176
 
177
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
185
  print("\n\n*** Generate:")
186
 
187
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
188
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
189
  print(tokenizer.decode(output[0]))
190
 
191
  # Inference can also be done using transformers' pipeline
 
196
  model=model,
197
  tokenizer=tokenizer,
198
  max_new_tokens=512,
199
+ do_sample=True,
200
  temperature=0.7,
201
  top_p=0.95,
202
+ top_k=40,
203
+ repetition_penalty=1.1
204
  )
205
 
206
  print(pipe(prompt_template)[0]['generated_text'])
 
225
 
226
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
227
 
228
+ ## Thanks, and how to contribute
229
 
230
  Thanks to the [chirper.ai](https://chirper.ai) team!
231
 
232
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
233
+
234
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
235
 
236
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
242
 
243
  **Special thanks to**: Aemon Algiz.
244
 
245
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
246
 
247
 
248
  Thank you to all my generous patrons and donaters!