Update for Transformers GPTQ support
Browse files- README.md +21 -15
- config.json +39 -28
- gptq_model-4bit-128g.safetensors → model.safetensors +0 -0
- quantize_config.json +1 -1
README.md
CHANGED
@@ -15,17 +15,20 @@ quantized_by: TheBloke
|
|
15 |
---
|
16 |
|
17 |
<!-- header start -->
|
18 |
-
|
19 |
-
|
|
|
20 |
</div>
|
21 |
<div style="display: flex; justify-content: space-between; width: 100%;">
|
22 |
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
23 |
-
<p><a href="https://discord.gg/theblokeai">Chat & support:
|
24 |
</div>
|
25 |
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
26 |
-
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
27 |
</div>
|
28 |
</div>
|
|
|
|
|
29 |
<!-- header end -->
|
30 |
|
31 |
# LlongOrca 7B 16K - GPTQ
|
@@ -77,11 +80,11 @@ All GPTQ files are made with AutoGPTQ.
|
|
77 |
|
78 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
79 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
80 |
-
| [main](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
|
81 |
-
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
|
82 |
-
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
83 |
-
| [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
84 |
-
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
|
85 |
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
|
86 |
|
87 |
## How to download from branches
|
@@ -199,6 +202,7 @@ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLa
|
|
199 |
ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
|
200 |
|
201 |
<!-- footer start -->
|
|
|
202 |
## Discord
|
203 |
|
204 |
For further support, and discussions on these models and AI in general, join us at:
|
@@ -218,13 +222,15 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
|
|
218 |
* Patreon: https://patreon.com/TheBlokeAI
|
219 |
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
220 |
|
221 |
-
**Special thanks to**:
|
222 |
|
223 |
-
**Patreon special mentions**:
|
224 |
|
225 |
|
226 |
Thank you to all my generous patrons and donaters!
|
227 |
|
|
|
|
|
228 |
<!-- footer end -->
|
229 |
|
230 |
# Original model card: Open-Orca's LlongOrca 7B 16K
|
@@ -238,7 +244,7 @@ Thank you to all my generous patrons and donaters!
|
|
238 |
|
239 |
# OpenOrca - LlongOrca - 7B - 16k
|
240 |
|
241 |
-
We have used our own [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca) to fine-tune on top of [LLongMA-2-7b-16k](https://huggingface.co/conceptofmind/LLongMA-2-7b-16k).
|
242 |
This dataset is our attempt to reproduce the dataset generated for Microsoft Research's [Orca Paper](https://arxiv.org/abs/2306.02707).
|
243 |
We use [OpenChat](https://huggingface.co/openchat) packing, trained with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
|
244 |
|
@@ -341,7 +347,7 @@ We used the `packing-attn` branch of Axolotl during training.
|
|
341 |
month = {7},
|
342 |
}
|
343 |
@misc{mukherjee2023orca,
|
344 |
-
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
|
345 |
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
|
346 |
year={2023},
|
347 |
eprint={2306.02707},
|
@@ -349,7 +355,7 @@ We used the `packing-attn` branch of Axolotl during training.
|
|
349 |
primaryClass={cs.CL}
|
350 |
}
|
351 |
@misc{longpre2023flan,
|
352 |
-
title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
|
353 |
author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
|
354 |
year={2023},
|
355 |
eprint={2301.13688},
|
@@ -357,7 +363,7 @@ We used the `packing-attn` branch of Axolotl during training.
|
|
357 |
primaryClass={cs.AI}
|
358 |
}
|
359 |
@misc{touvron2023llama,
|
360 |
-
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
|
361 |
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
|
362 |
year={2023},
|
363 |
eprint={2307.09288},
|
|
|
15 |
---
|
16 |
|
17 |
<!-- header start -->
|
18 |
+
<!-- 200823 -->
|
19 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
20 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
21 |
</div>
|
22 |
<div style="display: flex; justify-content: space-between; width: 100%;">
|
23 |
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
24 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
|
25 |
</div>
|
26 |
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
27 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
28 |
</div>
|
29 |
</div>
|
30 |
+
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
|
31 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
32 |
<!-- header end -->
|
33 |
|
34 |
# LlongOrca 7B 16K - GPTQ
|
|
|
80 |
|
81 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
82 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
83 |
+
| [main](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
|
84 |
+
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
|
85 |
+
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
86 |
+
| [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
87 |
+
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
|
88 |
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
|
89 |
|
90 |
## How to download from branches
|
|
|
202 |
ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
|
203 |
|
204 |
<!-- footer start -->
|
205 |
+
<!-- 200823 -->
|
206 |
## Discord
|
207 |
|
208 |
For further support, and discussions on these models and AI in general, join us at:
|
|
|
222 |
* Patreon: https://patreon.com/TheBlokeAI
|
223 |
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
224 |
|
225 |
+
**Special thanks to**: Aemon Algiz.
|
226 |
|
227 |
+
**Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
|
228 |
|
229 |
|
230 |
Thank you to all my generous patrons and donaters!
|
231 |
|
232 |
+
And thank you again to a16z for their generous grant.
|
233 |
+
|
234 |
<!-- footer end -->
|
235 |
|
236 |
# Original model card: Open-Orca's LlongOrca 7B 16K
|
|
|
244 |
|
245 |
# OpenOrca - LlongOrca - 7B - 16k
|
246 |
|
247 |
+
We have used our own [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca) to fine-tune on top of [LLongMA-2-7b-16k](https://huggingface.co/conceptofmind/LLongMA-2-7b-16k).
|
248 |
This dataset is our attempt to reproduce the dataset generated for Microsoft Research's [Orca Paper](https://arxiv.org/abs/2306.02707).
|
249 |
We use [OpenChat](https://huggingface.co/openchat) packing, trained with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
|
250 |
|
|
|
347 |
month = {7},
|
348 |
}
|
349 |
@misc{mukherjee2023orca,
|
350 |
+
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
|
351 |
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
|
352 |
year={2023},
|
353 |
eprint={2306.02707},
|
|
|
355 |
primaryClass={cs.CL}
|
356 |
}
|
357 |
@misc{longpre2023flan,
|
358 |
+
title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
|
359 |
author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
|
360 |
year={2023},
|
361 |
eprint={2301.13688},
|
|
|
363 |
primaryClass={cs.AI}
|
364 |
}
|
365 |
@misc{touvron2023llama,
|
366 |
+
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
|
367 |
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
|
368 |
year={2023},
|
369 |
eprint={2307.09288},
|
config.json
CHANGED
@@ -1,30 +1,41 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "conceptofmind/LLongMA-2-7b-16k",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 16384,
|
13 |
+
"model_type": "llama",
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_key_value_heads": 32,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"pretraining_tp": 1,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": {
|
21 |
+
"factor": 4.0,
|
22 |
+
"type": "linear"
|
23 |
+
},
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.32.0.dev0",
|
27 |
+
"use_cache": true,
|
28 |
+
"use_flash_attention": false,
|
29 |
+
"vocab_size": 32003,
|
30 |
+
"quantization_config": {
|
31 |
+
"bits": 4,
|
32 |
+
"group_size": 128,
|
33 |
+
"damp_percent": 0.1,
|
34 |
+
"desc_act": false,
|
35 |
+
"sym": true,
|
36 |
+
"true_sequential": true,
|
37 |
+
"model_name_or_path": null,
|
38 |
+
"model_file_base_name": "model",
|
39 |
+
"quant_method": "gptq"
|
40 |
+
}
|
41 |
}
|
gptq_model-4bit-128g.safetensors → model.safetensors
RENAMED
File without changes
|
quantize_config.json
CHANGED
@@ -6,5 +6,5 @@
|
|
6 |
"sym": true,
|
7 |
"true_sequential": true,
|
8 |
"model_name_or_path": null,
|
9 |
-
"model_file_base_name":
|
10 |
}
|
|
|
6 |
"sym": true,
|
7 |
"true_sequential": true,
|
8 |
"model_name_or_path": null,
|
9 |
+
"model_file_base_name": "model"
|
10 |
}
|