TheBloke commited on
Commit
ebaa5ac
1 Parent(s): b2f8b14

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +419 -0
README.md ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ language:
4
+ - en
5
+ license: llama2
6
+ model_creator: NousResearch
7
+ model_link: https://huggingface.co/NousResearch/Nous-Hermes-Llama2-70b
8
+ model_name: Nous Hermes Llama2 70B
9
+ model_type: llama
10
+ quantized_by: TheBloke
11
+ tags:
12
+ - llama-2
13
+ - self-instruct
14
+ - distillation
15
+ - synthetic instruction
16
+ ---
17
+
18
+ <!-- header start -->
19
+ <!-- 200823 -->
20
+ <div style="width: auto; margin-left: auto; margin-right: auto">
21
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
22
+ </div>
23
+ <div style="display: flex; justify-content: space-between; width: 100%;">
24
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
25
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
26
+ </div>
27
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
28
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
29
+ </div>
30
+ </div>
31
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
32
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
33
+ <!-- header end -->
34
+
35
+ # Nous Hermes Llama2 70B - GPTQ
36
+ - Model creator: [NousResearch](https://huggingface.co/NousResearch)
37
+ - Original model: [Nous Hermes Llama2 70B](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-70b)
38
+
39
+ ## Description
40
+
41
+ This repo contains GPTQ model files for [NousResearch's Nous Hermes Llama2 70B](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-70b).
42
+
43
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
44
+
45
+ ## Repositories available
46
+
47
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GPTQ)
48
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGUF)
49
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GGML)
50
+ * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-70b)
51
+
52
+ ## Prompt template: Alpaca-InstructOnly
53
+
54
+ ```
55
+ ### Instruction:
56
+
57
+ {prompt}
58
+
59
+ ### Response:
60
+ ```
61
+
62
+ ## Provided files and GPTQ parameters
63
+
64
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
65
+
66
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
67
+
68
+ All GPTQ files are made with AutoGPTQ.
69
+
70
+ <details>
71
+ <summary>Explanation of GPTQ parameters</summary>
72
+
73
+ - Bits: The bit size of the quantised model.
74
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
75
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
76
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
77
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
78
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
79
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
80
+
81
+ </details>
82
+
83
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
84
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
85
+ | [main](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
86
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
87
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
88
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
89
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.78 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
90
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
91
+
92
+ ## How to download from branches
93
+
94
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Nous-Hermes-Llama2-70B-GPTQ:gptq-4bit-32g-actorder_True`
95
+ - With Git, you can clone a branch with:
96
+ ```
97
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Nous-Hermes-Llama2-70B-GPTQ
98
+ ```
99
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
100
+
101
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
102
+
103
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
104
+
105
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
106
+
107
+ 1. Click the **Model tab**.
108
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Nous-Hermes-Llama2-70B-GPTQ`.
109
+ - To download from a specific branch, enter for example `TheBloke/Nous-Hermes-Llama2-70B-GPTQ:gptq-4bit-32g-actorder_True`
110
+ - see Provided Files above for the list of branches for each option.
111
+ 3. Click **Download**.
112
+ 4. The model will start downloading. Once it's finished it will say "Done"
113
+ 5. In the top left, click the refresh icon next to **Model**.
114
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Nous-Hermes-Llama2-70B-GPTQ`
115
+ 7. The model will automatically load, and is now ready for use!
116
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
117
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
118
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
119
+
120
+ ## How to use this GPTQ model from Python code
121
+
122
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
123
+
124
+ ```
125
+ pip3 install auto-gptq
126
+ ```
127
+
128
+ If you have problems installing AutoGPTQ, please build from source instead:
129
+ ```
130
+ pip3 uninstall -y auto-gptq
131
+ git clone https://github.com/PanQiWei/AutoGPTQ
132
+ cd AutoGPTQ
133
+ pip3 install .
134
+ ```
135
+
136
+ Then try the following example code:
137
+
138
+ ```python
139
+ from transformers import AutoTokenizer, pipeline, logging
140
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
141
+
142
+ model_name_or_path = "TheBloke/Nous-Hermes-Llama2-70B-GPTQ"
143
+
144
+ use_triton = False
145
+
146
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
147
+
148
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
149
+ use_safetensors=True,
150
+ trust_remote_code=False,
151
+ device="cuda:0",
152
+ use_triton=use_triton,
153
+ quantize_config=None)
154
+
155
+ """
156
+ # To download from a specific branch, use the revision parameter, as in this example:
157
+ # Note that `revision` requires AutoGPTQ 0.3.1 or later!
158
+
159
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
160
+ revision="gptq-4bit-32g-actorder_True",
161
+ use_safetensors=True,
162
+ trust_remote_code=False,
163
+ device="cuda:0",
164
+ quantize_config=None)
165
+ """
166
+
167
+ prompt = "Tell me about AI"
168
+ prompt_template=f'''### Instruction:
169
+
170
+ {prompt}
171
+
172
+ ### Response:
173
+ '''
174
+
175
+ print("\n\n*** Generate:")
176
+
177
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
178
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
179
+ print(tokenizer.decode(output[0]))
180
+
181
+ # Inference can also be done using transformers' pipeline
182
+
183
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
184
+ logging.set_verbosity(logging.CRITICAL)
185
+
186
+ print("*** Pipeline:")
187
+ pipe = pipeline(
188
+ "text-generation",
189
+ model=model,
190
+ tokenizer=tokenizer,
191
+ max_new_tokens=512,
192
+ temperature=0.7,
193
+ top_p=0.95,
194
+ repetition_penalty=1.15
195
+ )
196
+
197
+ print(pipe(prompt_template)[0]['generated_text'])
198
+ ```
199
+
200
+ ## Compatibility
201
+
202
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
203
+
204
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
205
+
206
+ <!-- footer start -->
207
+ <!-- 200823 -->
208
+ ## Discord
209
+
210
+ For further support, and discussions on these models and AI in general, join us at:
211
+
212
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
213
+
214
+ ## Thanks, and how to contribute.
215
+
216
+ Thanks to the [chirper.ai](https://chirper.ai) team!
217
+
218
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
219
+
220
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
221
+
222
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
223
+
224
+ * Patreon: https://patreon.com/TheBlokeAI
225
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
226
+
227
+ **Special thanks to**: Aemon Algiz.
228
+
229
+ **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
230
+
231
+
232
+ Thank you to all my generous patrons and donaters!
233
+
234
+ And thank you again to a16z for their generous grant.
235
+
236
+ <!-- footer end -->
237
+
238
+ # Original model card: NousResearch's Nous Hermes Llama2 70B
239
+
240
+
241
+ # Model Card: Nous-Hermes-Llama2-70b
242
+
243
+ Compute provided by PygmalionAI, thank you! Follow PygmalionAI on Twitter @pygmalion_ai.
244
+
245
+ ## Model Description
246
+
247
+ Nous-Hermes-Llama2-70b is a state-of-the-art language model fine-tuned on over 300,000 instructions. This model was fine-tuned by Nous Research, with Teknium and Emozilla leading the fine tuning process and dataset curation, Pygmalion sponsoring the compute, and several other contributors.
248
+
249
+ This Hermes model uses the exact same dataset as Hermes on Llama-1. This is to ensure consistency between the old Hermes and new, for anyone who wanted to keep Hermes as similar to the old one, just more capable.
250
+
251
+ This model stands out for its long responses, lower hallucination rate, and absence of OpenAI censorship mechanisms in the synthetic training data. The fine-tuning process was performed with a 4096 sequence length on an 8x H100 80GB machine.
252
+
253
+ ## Model Training
254
+
255
+ The model was trained almost entirely on synthetic GPT-4 outputs. Curating high quality GPT-4 datasets enables incredibly high quality in knowledge, task completion, and style.
256
+
257
+ This includes data from diverse sources such as GPTeacher, the general, roleplay v1&2, code instruct datasets, Nous Instruct & PDACTL (unpublished), and several others, detailed further below
258
+
259
+ ## Collaborators
260
+ The model fine-tuning and the datasets were a collaboration of efforts and resources between Teknium, Karan4D, Emozilla, Huemin Art, and Pygmalion AI.
261
+
262
+ Special mention goes to @winglian for assisting in some of the training issues.
263
+
264
+ Huge shoutout and acknowledgement is deserved for all the dataset creators who generously share their datasets openly.
265
+
266
+ Among the contributors of datasets:
267
+ - GPTeacher was made available by Teknium
268
+ - Wizard LM by nlpxucan
269
+ - Nous Research Instruct Dataset was provided by Karan4D and HueminArt.
270
+ - GPT4-LLM and Unnatural Instructions were provided by Microsoft
271
+ - Airoboros dataset by jondurbin
272
+ - Camel-AI's domain expert datasets are from Camel-AI
273
+ - CodeAlpaca dataset by Sahil 2801.
274
+
275
+ If anyone was left out, please open a thread in the community tab.
276
+
277
+ ## Prompt Format
278
+
279
+ The model follows the Alpaca prompt format:
280
+ ```
281
+ ### Instruction:
282
+ <prompt>
283
+
284
+ ### Response:
285
+ <leave a newline blank for model to respond>
286
+
287
+ ```
288
+
289
+ or
290
+
291
+ ```
292
+ ### Instruction:
293
+ <prompt>
294
+
295
+ ### Input:
296
+ <additional context>
297
+
298
+ ### Response:
299
+ <leave a newline blank for model to respond>
300
+
301
+ ```
302
+
303
+ ## Benchmarks:
304
+
305
+ GPT4All Suite:
306
+
307
+ ```
308
+ hf-causal-experimental (pretrained=/home/data/axolotl/Nous-Hermes-Llama2-70b,dtype=float16,use_accelerate=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
309
+ | Task |Version| Metric |Value | |Stderr|
310
+ |-------------|------:|--------|-----:|---|-----:|
311
+ |arc_challenge| 0|acc |0.5734|± |0.0145|
312
+ | | |acc_norm|0.6015|± |0.0143|
313
+ |arc_easy | 0|acc |0.8422|± |0.0075|
314
+ | | |acc_norm|0.8253|± |0.0078|
315
+ |boolq | 1|acc |0.8422|± |0.0064|
316
+ |hellaswag | 0|acc |0.6519|± |0.0048|
317
+ | | |acc_norm|0.8363|± |0.0037|
318
+ |openbookqa | 0|acc |0.3880|± |0.0218|
319
+ | | |acc_norm|0.5000|± |0.0224|
320
+ |piqa | 0|acc |0.8313|± |0.0087|
321
+ | | |acc_norm|0.8351|± |0.0087|
322
+ |winogrande | 0|acc |0.7751|± |0.0117|
323
+ ```
324
+
325
+
326
+ BigBench Suite:
327
+ ```
328
+ hf-causal-experimental (pretrained=/home/data/axolotl/Nous-Hermes-Llama2-70b,dtype=float16,use_accelerate=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
329
+ | Task |Version| Metric |Value | |Stderr|
330
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
331
+ |bigbench_causal_judgement | 0|multiple_choice_grade|0.6579|± |0.0345|
332
+ |bigbench_date_understanding | 0|multiple_choice_grade|0.7344|± |0.0230|
333
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3023|± |0.0286|
334
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|0.2340|± |0.0224|
335
+ | | |exact_str_match |0.0000|± |0.0000|
336
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2760|± |0.0200|
337
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.1871|± |0.0148|
338
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4467|± |0.0288|
339
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|0.3240|± |0.0210|
340
+ |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158|
341
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6605|± |0.0106|
342
+ |bigbench_ruin_names | 0|multiple_choice_grade|0.4598|± |0.0236|
343
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2585|± |0.0139|
344
+ |bigbench_snarks | 0|multiple_choice_grade|0.6630|± |0.0352|
345
+ |bigbench_sports_understanding | 0|multiple_choice_grade|0.7394|± |0.0140|
346
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|0.4440|± |0.0157|
347
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2168|± |0.0117|
348
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1531|± |0.0086|
349
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4467|± |0.0288|
350
+ ```
351
+
352
+ AGIEval:
353
+ ```
354
+ hf-causal-experimental (pretrained=/home/data/axolotl/Nous-Hermes-Llama2-70b,dtype=float16,use_accelerate=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
355
+ | Task |Version| Metric |Value | |Stderr|
356
+ |------------------------------|------:|--------|-----:|---|-----:|
357
+ |agieval_aqua_rat | 0|acc |0.2480|± |0.0272|
358
+ | | |acc_norm|0.2362|± |0.0267|
359
+ |agieval_logiqa_en | 0|acc |0.3917|± |0.0191|
360
+ | | |acc_norm|0.3932|± |0.0192|
361
+ |agieval_lsat_ar | 0|acc |0.2217|± |0.0275|
362
+ | | |acc_norm|0.2000|± |0.0264|
363
+ |agieval_lsat_lr | 0|acc |0.5765|± |0.0219|
364
+ | | |acc_norm|0.4922|± |0.0222|
365
+ |agieval_lsat_rc | 0|acc |0.6914|± |0.0282|
366
+ | | |acc_norm|0.6022|± |0.0299|
367
+ |agieval_sat_en | 0|acc |0.8641|± |0.0239|
368
+ | | |acc_norm|0.8204|± |0.0268|
369
+ |agieval_sat_en_without_passage| 0|acc |0.5291|± |0.0349|
370
+ | | |acc_norm|0.4709|± |0.0349|
371
+ |agieval_sat_math | 0|acc |0.4136|± |0.0333|
372
+ | | |acc_norm|0.3455|± |0.0321|
373
+ ```
374
+
375
+ ## Resources for Applied Use Cases:
376
+ Check out LM Studio for a nice chatgpt style interface here: https://lmstudio.ai/
377
+ For an example of a back and forth chatbot using huggingface transformers and discord, check out: https://github.com/teknium1/alpaca-discord
378
+ For an example of a roleplaying discord chatbot, check out this: https://github.com/teknium1/alpaca-roleplay-discordbot
379
+
380
+ ## Future Plans
381
+ We plan to continue to iterate on both more high quality data, and new data filtering techniques to eliminate lower quality data going forward.
382
+
383
+ ## Model Usage
384
+ The model is available for download on Hugging Face. It is suitable for a wide range of language tasks, from generating creative text to understanding and following complex instructions.
385
+
386
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
387
+
388
+
389
+ ## Training procedure
390
+
391
+
392
+ The following `bitsandbytes` quantization config was used during training:
393
+ - quant_method: bitsandbytes
394
+ - load_in_8bit: False
395
+ - load_in_4bit: True
396
+ - llm_int8_threshold: 6.0
397
+ - llm_int8_skip_modules: None
398
+ - llm_int8_enable_fp32_cpu_offload: False
399
+ - llm_int8_has_fp16_weight: False
400
+ - bnb_4bit_quant_type: nf4
401
+ - bnb_4bit_use_double_quant: True
402
+ - bnb_4bit_compute_dtype: bfloat16
403
+
404
+ The following `bitsandbytes` quantization config was used during training:
405
+ - quant_method: bitsandbytes
406
+ - load_in_8bit: False
407
+ - load_in_4bit: True
408
+ - llm_int8_threshold: 6.0
409
+ - llm_int8_skip_modules: None
410
+ - llm_int8_enable_fp32_cpu_offload: False
411
+ - llm_int8_has_fp16_weight: False
412
+ - bnb_4bit_quant_type: nf4
413
+ - bnb_4bit_use_double_quant: True
414
+ - bnb_4bit_compute_dtype: bfloat16
415
+ ### Framework versions
416
+
417
+ - PEFT 0.5.0.dev0
418
+
419
+ - PEFT 0.5.0.dev0