File size: 26,565 Bytes
5d3e66e
 
 
 
 
 
 
 
 
 
 
 
 
9934f59
5d3e66e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9934f59
5d3e66e
 
9934f59
5d3e66e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9934f59
5d3e66e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
---
base_model: https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B
datasets:
- Open-Orca/OpenOrca
inference: false
language:
- en
library_name: transformers
license: llama2
model_creator: Open-Orca
model_name: OpenOrca x OpenChat - Preview2 - 13B
model_type: llama
pipeline_tag: text-generation
prompt_template: 'GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:

  '
quantized_by: TheBloke
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# OpenOrca x OpenChat - Preview2 - 13B - AWQ
- Model creator: [Open-Orca](https://huggingface.co/Open-Orca)
- Original model: [OpenOrca x OpenChat - Preview2 - 13B](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B)

<!-- description start -->
## Description

This repo contains AWQ model files for [Open-Orca's OpenOrca x OpenChat - Preview2 - 13B](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B).


### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.

It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/OpenOrcaxOpenChat-Preview2-13B-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/OpenOrcaxOpenChat-Preview2-13B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/OpenOrcaxOpenChat-Preview2-13B-GGUF)
* [Open-Orca's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: OpenChat

```
GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:

```

<!-- prompt-template end -->


<!-- README_AWQ.md-provided-files start -->
## Provided files and AWQ parameters

For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.

Models are released as sharded safetensors files.

| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
| ------ | ---- | -- | ----------- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/OpenOrcaxOpenChat-Preview2-13B-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.25 GB

<!-- README_AWQ.md-provided-files end -->

<!-- README_AWQ.md-use-from-vllm start -->
## Serving this model from vLLM

Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).

- When using vLLM as a server, pass the `--quantization awq` parameter, for example:

```shell
python3 python -m vllm.entrypoints.api_server --model TheBloke/OpenOrcaxOpenChat-Preview2-13B-AWQ --quantization awq
```

When using vLLM from Python code, pass the `quantization=awq` parameter, for example:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/OpenOrcaxOpenChat-Preview2-13B-AWQ", quantization="awq")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
<!-- README_AWQ.md-use-from-vllm start -->

<!-- README_AWQ.md-use-from-python start -->
## How to use this AWQ model from Python code

### Install the necessary packages

Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later

```shell
pip3 install autoawq
```

If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
```

### You can then try the following example code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_name_or_path = "TheBloke/OpenOrcaxOpenChat-Preview2-13B-AWQ"

# Load model
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
                                          trust_remote_code=False, safetensors=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)

prompt = "Tell me about AI"
prompt_template=f'''GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:

'''

print("\n\n*** Generate:")

tokens = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    tokens,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    max_new_tokens=512
)

print("Output: ", tokenizer.decode(generation_output[0]))

# Inference can also be done using transformers' pipeline
from transformers import pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_AWQ.md-use-from-python end -->

<!-- README_AWQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).

[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
<!-- README_AWQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: Open-Orca's OpenOrca x OpenChat - Preview2 - 13B


<p><h1>🐋 The Second OpenOrca Model Preview! 🐋</h1></p>


![OpenOrca Logo](https://huggingface.co/datasets/Open-Orca/OpenOrca/resolve/main/OpenOrcaLogo.png "OpenOrca Logo")


# OpenOrca x OpenChat - Preview2 - 13B

We have used our own [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca) to fine-tune Llama2-13B using [OpenChat](https://huggingface.co/openchat) packing.
This dataset is our attempt to reproduce the dataset generated for Microsoft Research's [Orca Paper](https://arxiv.org/abs/2306.02707).

This second preview release is trained on a curated filtered subset of most of our GPT-4 augmented data.

This release highlights that our dataset and training methods have surpassed performance parity with the Orca paper.
We measured this with BigBench-Hard and AGIEval results with the same methods as used in the Orca paper, finding **~103%** of original Orca's performance on average.
As well, this is done with <1/10th the compute requirement and using <20% of the dataset size from the original Orca paper.

We have run extensive evaluations internally and expect this model to **place number 1** on both the HuggingFaceH4 Open LLM Leaderboard and the GPT4ALL Leaderboard for 13B models.

"One" of [OpenChat](https://huggingface.co/openchat) has joined our team, and we'd like to provide special thanks for their training of this model!
We have utilized OpenChat [MultiPack algorithm](https://github.com/imoneoi/multipack_sampler) which achieves 99.85% bin-packing efficiency on our dataset.
This has significantly reduced training time, with efficiency improvement of 3-10X over traditional methods.


<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 40%">


Want to visualize our full (pre-filtering) dataset? Check out our [Nomic Atlas Map](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2).


[<img src="https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B/resolve/main/OpenOrca%20Nomic%20Atlas.png" alt="Atlas Nomic Dataset Map" width="400" height="400" />](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2)


We are in-process with training more models, so keep a look out on our org for releases coming soon with exciting partners.

We will also give sneak-peak announcements on our Discord, which you can find here:

https://AlignmentLab.ai

# Prompt Template

We use our own prompt template which we call "`OpenChat Llama2 V1`".

The model is heavily conditioned to work using this format only and will likely encounter issues such as run-on output which emulates a chat between a user and assistant if this format is not properly followed.


Examples:
```
# Single-turn `OpenChat Llama2 V1`
tokenize("You are OpenOrcaChat.<|end_of_turn|>User: Hello<|end_of_turn|>Assistant:")
# [1, 887, 526, 4673, 2816, 1113, 1451, 271, 29889, 32000, 4911, 29901, 15043, 32000, 4007, 22137, 29901]

# Multi-turn `OpenChat Llama2 V1`
tokenize("You are OpenOrcaChat.<|end_of_turn|>User: Hello<|end_of_turn|>Assistant: Hi<|end_of_turn|>User: How are you today?<|end_of_turn|>Assistant:")
# [1, 887, 526, 4673, 2816, 1113, 1451, 271, 29889, 32000, 4911, 29901, 15043, 32000, 4007, 22137, 29901, 6324, 32000, 4911, 29901, 1128, 526, 366, 9826, 29973, 32000, 4007, 22137, 29901]
```

For UIs with Prefix and Suffix fields, these will likely work:

Prefix (include a space after colon):
```
User: 
```

Suffix (space after colon):
```
<|end_of_turn|>\nAssistant: 
```

**Oobabooga's text-generation-webui instructions can be found [further down the page](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B#serving-with-oobabooga--text-generation-webui).**


# Evaluation

We have evaluated **OpenOrcaxOpenChat-Preview2-13B** on hard reasoning tasks from BigBench-Hard and AGIEval as outlined in the Orca paper.

Our average performance for BigBench-Hard: 0.488

Average for AGIEval: 0.447

We find our score averages to **~103%** of the total performance that was shown in the Orca paper, using the same evaluation methods as outlined in the paper.

So we are surpassing Orca performance with <20% of the dataset size and <1/10th the training budget!

As well, we have evaluated using the methodology and tools for the HuggingFace Leaderboard and GPT4ALL Leaderboard, and find that we place #1 on both for all 13B models at release time!

## AGIEval Performance

We present our results in two columns.
The column for "`(Orca Paper eval)`" uses the methods outlined in the Orca paper, so as to be a direct apples-to-apples comparison with the results from the paper.
The column for "`(HF Leaderboard eval)`" uses EleutherAI's LM Evaluation Harness with settings outlined by HuggingFace. These results are not comparable to the other columns, as the methods are different.

![OpenOrca Preview2 AGIEval Performance](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B/resolve/main/Images/OpenOrcaP2AGIEval.png "AGIEval Performance")

## BigBench-Hard Performance

We present our results in two columns.
The column for "`(Orca Paper eval)`" uses the methods outlined in the Orca paper, so as to be a direct apples-to-apples comparison with the results from the paper.
The column for "`(HF Leaderboard eval)`" uses EleutherAI's LM Evaluation Harness with settings outlined by HuggingFace. These results are not comparable to the other columns, as the methods are different.

![OpenOrca Preview2 BigBench-Hard Performance](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B/resolve/main/Images/OpenOrcaP2BigBenchHardEval.png "BigBench-Hard Performance")

## HuggingFaceH4 Open LLM Leaderboard Performance

We have run our own tests using parameters matching the [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) evals.

We place #1 for all 13B models at release time!

![OpenOrca Preview2 HuggingFace Leaderboard Internal Performance](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B/resolve/main/Images/OpenOrcaP2HuggingFaceLeaderboard.png "HuggingFace Leaderboard Internal Performance")

**Update Aug 10th:** The official results on the leaderboard are below.

![OpenOrca Preview2 HuggingFace Leaderboard Performance](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B/resolve/main/Images/OpenOrcaP2HFLeaderboardOfficial.png "HuggingFace Leaderboard Performance")

Since our release, a new model which merges an Orca-style model with a Platypus (trained on STEM and logic) model places narrowly above ours, but we were #1 at release time.

Below we also highlight how our model fits relative to models of all sizes on the current (as of Aug 10th, 2023) leaderboard.

![OpenOrca Preview2 HuggingFace Leaderboard Performance](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B/resolve/main/Images/OpenOrcaP2HFLeaderboardFull.png "HuggingFace Full Leaderboard")

Notably, performance is beyond falcon-40b-instruct, and close to LLaMA1-65B base.

## GPT4ALL Leaderboard Performance

We have tested using parameters matching the GPT4ALL Benchmark Suite and report our results and placement vs their official reporting below.

We place #1 for all open models and come within comparison of `text-davinci-003`, a proprietary OpenAI model an order of magnitude larger.

![OpenOrca Preview2 GPT4ALL Performance](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B/resolve/main/Images/OpenOrcaP2GPT4ALL_Leaderboard.png "GPT4ALL Performance")


# Dataset

We used a curated, filtered selection of most of the GPT-4 augmented data from our OpenOrca dataset, which aims to reproduce the Orca Research Paper dataset.
Further details of our curation practices will be forthcoming with our full model releases.


# Training

We trained with 8x A100-80G GPUs for 46 hours, completing 5 epochs of full fine tuning on our dataset in one training run.
This contrasts with the 20x A100-80G GPUs for 200 hours used in the Orca paper, for only 3 epochs, and requiring stacked training (which is known to suffer catastrophic forgetting).
Our compute requirement was <1/10th that of the original Orca.
Commodity cost was ~$600.

Please await our full releases for further training details.


# Serving

This model is most easily served with [OpenChat's](https://github.com/imoneoi/openchat) customized vLLM OpenAI-compatible API server.
This is highly recommended as it is by far the fastest in terms of inference speed and is a quick and easy option for setup.
We also illustrate setup of Oobabooga/text-generation-webui below. The settings outlined there will also apply to other uses of `Transformers`.

## Serving Quantized

Pre-quantized models are now available courtesy of our friend TheBloke:

* **GGML**: https://huggingface.co/TheBloke/OpenOrcaxOpenChat-Preview2-13B-GGML
* **GPTQ**: https://huggingface.co/TheBloke/OpenOrcaxOpenChat-Preview2-13B-GPTQ

The serving instructions below only apply to the unquantized model being presented in the repository you are viewing here.
There are some notes, such as on use of the prompt format, that will still apply to the quantized models though.

## Serving with OpenChat

[Install OpenChat](https://github.com/imoneoi/openchat/#installation)

After installation, run:

```bash
python -m ochat.serving.openai_api_server \
  --model-type openchat_llama2 \
  --model Open-Orca/OpenOrcaxOpenChat-Preview2-13B \
  --engine-use-ray --worker-use-ray --max-num-batched-tokens 5120
```

Follow the OpenChat documentation to use features such as tensor parallelism on consumer GPUs, API keys, and logging.
You may then connect to the OpenAI-compatible API endpoint with tools such as [BetterGPT.chat](https://bettergpt.chat).

## Serving with Oobabooga / text-generation-webui

The model may also be loaded via [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui/) in a similar manner to other models.
See the requirements below. Note that inference with just the Transformers library is significantly slower than using the recommended OpenChat vLLM server.

### Oobabooga Key Requirements

* You will first need to download the model as you normally do to the "`models/`" folder of your `text-generation-webui` installation.
* To use the unquantized model presented here, select "`Transformers`"" in the webui's "`Model`" tab "`Model loader`" dropdown.
  * You will likely want to tick "`auto-devices`". The model will require >40GB VRAM after loading in context for inference.
  * The model was trained in bf16, so tick the "`bf16`" box for best performance.
  * It will run safely on single GPUs with VRAM >=48GB (e.g. A6000)
    * If using consumer GPUs, e.g. 2x RTX3090 24GB, you will likely want to enter "18,17" under "`tensor_split`" to split the model across both GPUs
* The model will perform significantly better if you use the appropriate prompting template
  * We will submit a PR to include our prompting template into text-generation-webui soon
  * For now, manually enter the settings described in the following sections:

### Oobabooga Chat Settings

In the "`Chat settings`" tab, select the following settings:

For "`User String`" ...
```
User:
```
For "`Bot string`" ...
```
Assistant:
```
For "`Context`", this is analogous to system prompt.
It is not necessary, but we have found good results with the below example.
System prompts used in the Orca training also work well. ...
```
You are a helpful assistant. Please answer truthfully and write out your thinking step by step to be sure you get the right answer. If you make a mistake or encounter an error in your thinking, say so out loud and attempt to correct it. If you don't know or aren't sure about something, say so clearly. You will act as a professional logician, mathematician, and physicist. You will also act as the most appropriate type of expert to answer any particular question or solve the relevant problem; state which expert type your are, if so. Also think of any particular named expert that would be ideal to answer the relevant question or solve the relevant problem; name and act as them, if appropriate.
```
For "`Turn template`", this is absolutely essential to have. You will get poor, mixed up output without this template ...
```
<|user|> <|user-message|><|end_of_turn|>\n<|bot|> <|bot-message|>\n
```

When done, it should look as below:
<img src="https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B/resolve/main/Images/OpenOrcaLlama2OobaboogaChatInstructionTemplate.png" style="width: 40%">

You may then save this as a named template preset by clicking the "Floppy" icon and giving it an appropriate name in the popup, e.g. "`OpenOrcaxOpenChat Llama2`".

### Oobabooga Text Generation Mode

In the "`Text generation`" tab, select "`instruct`" as the mode:

#### Mode Illustration
It should look as below:
<img src="https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B/resolve/main/Images/OpenOrcaLlama2OobaboogaInstructMode.png" style="width: 40%">

Then you should be ready to generate!

# Citation

```bibtex
@software{OpenOrcaxOpenChatPreview2,
  title = {OpenOrcaxOpenChatPreview2: Llama2-13B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset},
  author = {Guan Wang and Bleys Goodson and Wing Lian and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
  year = {2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B},
}
@software{openchat,
  title = {{OpenChat: Advancing Open-source Language Models with Imperfect Data}},
  author = {Wang, Guan and Cheng, Sijie and Yu, Qiying and Liu, Changling},
  doi = {10.5281/zenodo.8105775},
  url = {https://github.com/imoneoi/openchat},
  version = {pre-release},
  year = {2023},
  month = {7},
}
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{longpre2023flan,
      title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning}, 
      author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
      year={2023},
      eprint={2301.13688},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
@misc{touvron2023llama,
    title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, 
    author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
    year={2023},
    eprint={2307.09288},
    archivePrefix={arXiv},
}
```