TheBloke commited on
Commit
2b31463
1 Parent(s): dc76f3b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +464 -0
README.md ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: fblgit/UNAversal-8x7B-v1beta
3
+ inference: false
4
+ language:
5
+ - en
6
+ library_name: transformers
7
+ license: cc-by-nc-sa-4.0
8
+ model_creator: FBL
9
+ model_name: UNAversal 8X7B v1Beta
10
+ model_type: mixtral
11
+ prompt_template: '{prompt}
12
+
13
+ '
14
+ quantized_by: TheBloke
15
+ tags:
16
+ - UNA
17
+ - juanako
18
+ - mixtral
19
+ - MoE
20
+ ---
21
+ <!-- markdownlint-disable MD041 -->
22
+
23
+ <!-- header start -->
24
+ <!-- 200823 -->
25
+ <div style="width: auto; margin-left: auto; margin-right: auto">
26
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
27
+ </div>
28
+ <div style="display: flex; justify-content: space-between; width: 100%;">
29
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
30
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
31
+ </div>
32
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
33
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
34
+ </div>
35
+ </div>
36
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
37
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
38
+ <!-- header end -->
39
+
40
+ # UNAversal 8X7B v1Beta - AWQ
41
+ - Model creator: [FBL](https://huggingface.co/fblgit)
42
+ - Original model: [UNAversal 8X7B v1Beta](https://huggingface.co/fblgit/UNAversal-8x7B-v1beta)
43
+
44
+ <!-- description start -->
45
+ ## Description
46
+
47
+ This repo contains AWQ model files for [FBL's UNAversal 8X7B v1Beta](https://huggingface.co/fblgit/UNAversal-8x7B-v1beta).
48
+
49
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
50
+
51
+
52
+ **MIXTRAL AWQ**
53
+
54
+ This is a Mixtral AWQ model.
55
+
56
+ For AutoAWQ inference, please install AutoAWQ 0.1.8 or later.
57
+
58
+ Support via Transformers is also available, but currently requires installing Transformers from Github: `pip3 install git+https://github.com/huggingface/transformers.git`
59
+
60
+ vLLM: version 0.2.6 is confirmed to support Mixtral AWQs.
61
+
62
+ TGI: I tested version 1.3.3 and it loaded the model fine, but I was not able to get any output back. Further testing/debug is required. (Let me know if you get it working!)
63
+
64
+ ### About AWQ
65
+
66
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
67
+
68
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
69
+
70
+ AWQ models are supported by (note that not all of these may support Mixtral models yet - see above):
71
+
72
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
73
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
74
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
75
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
76
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
77
+
78
+ <!-- description end -->
79
+ <!-- repositories-available start -->
80
+ ## Repositories available
81
+
82
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/UNAversal-8x7B-v1beta-AWQ)
83
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/UNAversal-8x7B-v1beta-GPTQ)
84
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/UNAversal-8x7B-v1beta-GGUF)
85
+ * [FBL's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/fblgit/UNAversal-8x7B-v1beta)
86
+ <!-- repositories-available end -->
87
+
88
+ <!-- prompt-template start -->
89
+ ## Prompt template: Unknown
90
+
91
+ ```
92
+ {prompt}
93
+
94
+ ```
95
+
96
+ <!-- prompt-template end -->
97
+
98
+
99
+ <!-- README_AWQ.md-provided-files start -->
100
+ ## Provided files, and AWQ parameters
101
+
102
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
103
+
104
+ Models are released as sharded safetensors files.
105
+
106
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
107
+ | ------ | ---- | -- | ----------- | ------- | ---- |
108
+ | [main](https://huggingface.co/TheBloke/UNAversal-8x7B-v1beta-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 24.65 GB
109
+
110
+ <!-- README_AWQ.md-provided-files end -->
111
+
112
+ <!-- README_AWQ.md-text-generation-webui start -->
113
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
114
+
115
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
116
+
117
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
118
+
119
+ 1. Click the **Model tab**.
120
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/UNAversal-8x7B-v1beta-AWQ`.
121
+ 3. Click **Download**.
122
+ 4. The model will start downloading. Once it's finished it will say "Done".
123
+ 5. In the top left, click the refresh icon next to **Model**.
124
+ 6. In the **Model** dropdown, choose the model you just downloaded: `UNAversal-8x7B-v1beta-AWQ`
125
+ 7. Select **Loader: AutoAWQ**.
126
+ 8. Click Load, and the model will load and is now ready for use.
127
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
128
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
129
+ <!-- README_AWQ.md-text-generation-webui end -->
130
+
131
+ <!-- README_AWQ.md-use-from-vllm start -->
132
+ ## Multi-user inference server: vLLM
133
+
134
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
135
+
136
+ - Please ensure you are using vLLM version 0.2 or later.
137
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
138
+
139
+ For example:
140
+
141
+ ```shell
142
+ python3 -m vllm.entrypoints.api_server --model TheBloke/UNAversal-8x7B-v1beta-AWQ --quantization awq --dtype auto
143
+ ```
144
+
145
+ - When using vLLM from Python code, again set `quantization=awq`.
146
+
147
+ For example:
148
+
149
+ ```python
150
+ from vllm import LLM, SamplingParams
151
+
152
+ prompts = [
153
+ "Tell me about AI",
154
+ "Write a story about llamas",
155
+ "What is 291 - 150?",
156
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
157
+ ]
158
+ prompt_template=f'''{prompt}
159
+ '''
160
+
161
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
162
+
163
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
164
+
165
+ llm = LLM(model="TheBloke/UNAversal-8x7B-v1beta-AWQ", quantization="awq", dtype="auto")
166
+
167
+ outputs = llm.generate(prompts, sampling_params)
168
+
169
+ # Print the outputs.
170
+ for output in outputs:
171
+ prompt = output.prompt
172
+ generated_text = output.outputs[0].text
173
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
174
+ ```
175
+ <!-- README_AWQ.md-use-from-vllm start -->
176
+
177
+ <!-- README_AWQ.md-use-from-tgi start -->
178
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
179
+
180
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
181
+
182
+ Example Docker parameters:
183
+
184
+ ```shell
185
+ --model-id TheBloke/UNAversal-8x7B-v1beta-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
186
+ ```
187
+
188
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
189
+
190
+ ```shell
191
+ pip3 install huggingface-hub
192
+ ```
193
+
194
+ ```python
195
+ from huggingface_hub import InferenceClient
196
+
197
+ endpoint_url = "https://your-endpoint-url-here"
198
+
199
+ prompt = "Tell me about AI"
200
+ prompt_template=f'''{prompt}
201
+ '''
202
+
203
+ client = InferenceClient(endpoint_url)
204
+ response = client.text_generation(prompt,
205
+ max_new_tokens=128,
206
+ do_sample=True,
207
+ temperature=0.7,
208
+ top_p=0.95,
209
+ top_k=40,
210
+ repetition_penalty=1.1)
211
+
212
+ print(f"Model output: ", response)
213
+ ```
214
+ <!-- README_AWQ.md-use-from-tgi end -->
215
+
216
+ <!-- README_AWQ.md-use-from-python start -->
217
+ ## Inference from Python code using Transformers
218
+
219
+ ### Install the necessary packages
220
+
221
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
222
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
223
+
224
+ ```shell
225
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
226
+ ```
227
+
228
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
229
+
230
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
231
+
232
+ ```shell
233
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
234
+ ```
235
+
236
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
237
+
238
+ ```shell
239
+ pip3 uninstall -y autoawq
240
+ git clone https://github.com/casper-hansen/AutoAWQ
241
+ cd AutoAWQ
242
+ pip3 install .
243
+ ```
244
+
245
+ ### Transformers example code (requires Transformers 4.35.0 and later)
246
+
247
+ ```python
248
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
249
+
250
+ model_name_or_path = "TheBloke/UNAversal-8x7B-v1beta-AWQ"
251
+
252
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
253
+ model = AutoModelForCausalLM.from_pretrained(
254
+ model_name_or_path,
255
+ low_cpu_mem_usage=True,
256
+ device_map="cuda:0"
257
+ )
258
+
259
+ # Using the text streamer to stream output one token at a time
260
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
261
+
262
+ prompt = "Tell me about AI"
263
+ prompt_template=f'''{prompt}
264
+ '''
265
+
266
+ # Convert prompt to tokens
267
+ tokens = tokenizer(
268
+ prompt_template,
269
+ return_tensors='pt'
270
+ ).input_ids.cuda()
271
+
272
+ generation_params = {
273
+ "do_sample": True,
274
+ "temperature": 0.7,
275
+ "top_p": 0.95,
276
+ "top_k": 40,
277
+ "max_new_tokens": 512,
278
+ "repetition_penalty": 1.1
279
+ }
280
+
281
+ # Generate streamed output, visible one token at a time
282
+ generation_output = model.generate(
283
+ tokens,
284
+ streamer=streamer,
285
+ **generation_params
286
+ )
287
+
288
+ # Generation without a streamer, which will include the prompt in the output
289
+ generation_output = model.generate(
290
+ tokens,
291
+ **generation_params
292
+ )
293
+
294
+ # Get the tokens from the output, decode them, print them
295
+ token_output = generation_output[0]
296
+ text_output = tokenizer.decode(token_output)
297
+ print("model.generate output: ", text_output)
298
+
299
+ # Inference is also possible via Transformers' pipeline
300
+ from transformers import pipeline
301
+
302
+ pipe = pipeline(
303
+ "text-generation",
304
+ model=model,
305
+ tokenizer=tokenizer,
306
+ **generation_params
307
+ )
308
+
309
+ pipe_output = pipe(prompt_template)[0]['generated_text']
310
+ print("pipeline output: ", pipe_output)
311
+
312
+ ```
313
+ <!-- README_AWQ.md-use-from-python end -->
314
+
315
+ <!-- README_AWQ.md-compatibility start -->
316
+ ## Compatibility
317
+
318
+ The files provided are tested to work with:
319
+
320
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
321
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
322
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
323
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
324
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
325
+
326
+ <!-- README_AWQ.md-compatibility end -->
327
+
328
+ <!-- footer start -->
329
+ <!-- 200823 -->
330
+ ## Discord
331
+
332
+ For further support, and discussions on these models and AI in general, join us at:
333
+
334
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
335
+
336
+ ## Thanks, and how to contribute
337
+
338
+ Thanks to the [chirper.ai](https://chirper.ai) team!
339
+
340
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
341
+
342
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
343
+
344
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
345
+
346
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
347
+
348
+ * Patreon: https://patreon.com/TheBlokeAI
349
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
350
+
351
+ **Special thanks to**: Aemon Algiz.
352
+
353
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
354
+
355
+
356
+ Thank you to all my generous patrons and donaters!
357
+
358
+ And thank you again to a16z for their generous grant.
359
+
360
+ <!-- footer end -->
361
+
362
+ # Original model card: FBL's UNAversal 8X7B v1Beta
363
+
364
+ # UNAversal - Uniform Neural Alignment (MoE)
365
+
366
+ This is just a beta, a first release so people can start working on franksteins and so.
367
+ It does achieve high GSM/Math and TQA, so ideally you can merge it with other mixtrals and see what coming out of it
368
+ Based on [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
369
+
370
+ ## UNA Details
371
+ For this model we came out with the most obvious, placing UNA on the router_logit. It does work, but we saw a much better performance on SFT by doing so.
372
+ So this model DOES have UNA-SFT phase, its highly experimental and it was merely using LLaMA-Factory datasets by example alpaca.
373
+
374
+ As the others:
375
+ - Can be finetuned further, try 2e-5 or **1e-4 (since its MOE)**
376
+ - Can be merged, here you will have to improvise and please report findings on a discussion thread.
377
+
378
+ **REMINDER**: please.. cite, it does help on the research and the lab itself, seriously.
379
+
380
+ ## NEED YOUR HELP!!
381
+ I need a multi-turn trainloop for the Mixtral, that can squeeze the juice out of 8xH100's properly. Please feel free to reach @fblgit either discord or twitter. thanks!
382
+
383
+ # Evals
384
+ Here there are some, but we also submitted it to the HF eval queue....
385
+
386
+ ## GSM8k 5-Shot
387
+ ```
388
+ |Tasks|Version| Filter |n-shot| Metric |Value | |Stderr|
389
+ |-----|-------|----------|-----:|-----------|-----:|---|-----:|
390
+ |gsm8k|Yaml |get-answer| 5|exact_match|0.6603|± | 0.013|
391
+ ```
392
+ ## ARC 25-Shot
393
+ ```
394
+ | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
395
+ |-------------|-------|------|-----:|--------|-----:|---|-----:|
396
+ |arc_challenge|Yaml |none | 25|acc |0.6621|± |0.0138|
397
+ | | |none | 25|acc_norm|0.6962|± |0.0134|
398
+ ```
399
+
400
+ ## TruthfulQA 0-Shot (MC2)
401
+ ```
402
+ | Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
403
+ |--------------|-------|------|-----:|------|-----:|---|-----:|
404
+ |truthfulqa_mc2|Yaml |none | 0|acc |0.7122|± |0.0141|
405
+ ```
406
+
407
+ ## 0-Shots Evals
408
+ ```
409
+ | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
410
+ |--------------|-------|------|-----:|----------|-----:|---|-----:|
411
+ |arc_challenge |Yaml |none | 0|acc |0.6101|± |0.0143|
412
+ | | |none | 0|acc_norm |0.6425|± |0.0140|
413
+ |arc_easy |Yaml |none | 0|acc |0.8615|± |0.0071|
414
+ | | |none | 0|acc_norm |0.8375|± |0.0076|
415
+ |boolq |Yaml |none | 0|acc |0.8624|± |0.0060|
416
+ |lambada_openai|Yaml |none | 0|perplexity|2.8318|± |0.0507|
417
+ | | |none | 0|acc |0.7650|± |0.0059|
418
+ |mathqa |Yaml |none | 0|acc |0.4472|± |0.0091|
419
+ | | |none | 0|acc_norm |0.4436|± |0.0091|
420
+ |piqa |Yaml |none | 0|acc |0.8292|± |0.0088|
421
+ | | |none | 0|acc_norm |0.8422|± |0.0085|
422
+ |pubmedqa |Yaml |none | 0|acc |0.7920|± |0.0182|
423
+ |sciq |Yaml |none | 0|acc |0.9630|± |0.0060|
424
+ | | |none | 0|acc_norm |0.9370|± |0.0077|
425
+ ```
426
+
427
+ ## BBH at 0-Shot
428
+ ```
429
+ vllm (pretrained=fblgit/UNAversal-8x7B-v1beta,tensor_parallel_size=2,data_parallel_size=4,gpu_memory_utilization=0.8,dtype=float16), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: auto
430
+ | Tasks |Version| Filter |n-shot| Metric |Value | |Stderr|
431
+ |----------------------------------------------------------|-------|----------|-----:|-----------|-----:|---|-----:|
432
+ |bbh |N/A |get-answer| 0|exact_match|0.6752|± |0.1772|
433
+ | - bbh_cot_fewshot_boolean_expressions |Yaml |get-answer| 0|exact_match|0.8840|± |0.0203|
434
+ | - bbh_cot_fewshot_causal_judgement |Yaml |get-answer| 0|exact_match|0.6417|± |0.0352|
435
+ | - bbh_cot_fewshot_date_understanding |Yaml |get-answer| 0|exact_match|0.7600|± |0.0271|
436
+ | - bbh_cot_fewshot_disambiguation_qa |Yaml |get-answer| 0|exact_match|0.7160|± |0.0286|
437
+ | - bbh_cot_fewshot_dyck_languages |Yaml |get-answer| 0|exact_match|0.1800|± |0.0243|
438
+ | - bbh_cot_fewshot_formal_fallacies |Yaml |get-answer| 0|exact_match|0.6520|± |0.0302|
439
+ | - bbh_cot_fewshot_geometric_shapes |Yaml |get-answer| 0|exact_match|0.3880|± |0.0309|
440
+ | - bbh_cot_fewshot_hyperbaton |Yaml |get-answer| 0|exact_match|0.9600|± |0.0124|
441
+ | - bbh_cot_fewshot_logical_deduction_five_objects |Yaml |get-answer| 0|exact_match|0.5360|± |0.0316|
442
+ | - bbh_cot_fewshot_logical_deduction_seven_objects |Yaml |get-answer| 0|exact_match|0.5040|± |0.0317|
443
+ | - bbh_cot_fewshot_logical_deduction_three_objects |Yaml |get-answer| 0|exact_match|0.8600|± |0.0220|
444
+ | - bbh_cot_fewshot_movie_recommendation |Yaml |get-answer| 0|exact_match|0.7840|± |0.0261|
445
+ | - bbh_cot_fewshot_multistep_arithmetic_two |Yaml |get-answer| 0|exact_match|0.6600|± |0.0300|
446
+ | - bbh_cot_fewshot_navigate |Yaml |get-answer| 0|exact_match|0.8160|± |0.0246|
447
+ | - bbh_cot_fewshot_object_counting |Yaml |get-answer| 0|exact_match|0.8360|± |0.0235|
448
+ | - bbh_cot_fewshot_penguins_in_a_table |Yaml |get-answer| 0|exact_match|0.7329|± |0.0367|
449
+ | - bbh_cot_fewshot_reasoning_about_colored_objects |Yaml |get-answer| 0|exact_match|0.8120|± |0.0248|
450
+ | - bbh_cot_fewshot_ruin_names |Yaml |get-answer| 0|exact_match|0.4440|± |0.0315|
451
+ | - bbh_cot_fewshot_salient_translation_error_detection |Yaml |get-answer| 0|exact_match|0.5200|± |0.0317|
452
+ | - bbh_cot_fewshot_snarks |Yaml |get-answer| 0|exact_match|0.7135|± |0.0340|
453
+ | - bbh_cot_fewshot_sports_understanding |Yaml |get-answer| 0|exact_match|0.9400|± |0.0151|
454
+ | - bbh_cot_fewshot_temporal_sequences |Yaml |get-answer| 0|exact_match|0.7560|± |0.0272|
455
+ | - bbh_cot_fewshot_tracking_shuffled_objects_five_objects |Yaml |get-answer| 0|exact_match|0.5680|± |0.0314|
456
+ | - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects|Yaml |get-answer| 0|exact_match|0.6280|± |0.0306|
457
+ | - bbh_cot_fewshot_tracking_shuffled_objects_three_objects|Yaml |get-answer| 0|exact_match|0.6280|± |0.0306|
458
+ | - bbh_cot_fewshot_web_of_lies |Yaml |get-answer| 0|exact_match|0.9560|± |0.0130|
459
+ | - bbh_cot_fewshot_word_sorting |Yaml |get-answer| 0|exact_match|0.3800|± |0.0308|
460
+
461
+ |Groups|Version| Filter |n-shot| Metric |Value | |Stderr|
462
+ |------|-------|----------|-----:|-----------|-----:|---|-----:|
463
+ |bbh |N/A |get-answer| 0|exact_match|0.6752|± |0.1772|
464
+ ```