Text Generation
Transformers
GGUF
English
llama
finance
TheBloke commited on
Commit
97b12c5
1 Parent(s): 895b579

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +415 -0
README.md ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: AdaptLLM/finance-LLM-13B
3
+ datasets:
4
+ - Open-Orca/OpenOrca
5
+ - GAIR/lima
6
+ - WizardLM/WizardLM_evol_instruct_V2_196k
7
+ inference: false
8
+ language:
9
+ - en
10
+ license: other
11
+ metrics:
12
+ - accuracy
13
+ model_creator: AdaptLLM
14
+ model_name: Finance LLM 13B
15
+ model_type: llama
16
+ pipeline_tag: text-generation
17
+ prompt_template: '### User Input:
18
+
19
+ {prompt}
20
+
21
+
22
+ ### Assistant Output:
23
+
24
+ '
25
+ quantized_by: TheBloke
26
+ tags:
27
+ - finance
28
+ ---
29
+ <!-- markdownlint-disable MD041 -->
30
+
31
+ <!-- header start -->
32
+ <!-- 200823 -->
33
+ <div style="width: auto; margin-left: auto; margin-right: auto">
34
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
35
+ </div>
36
+ <div style="display: flex; justify-content: space-between; width: 100%;">
37
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
39
+ </div>
40
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
41
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
42
+ </div>
43
+ </div>
44
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
45
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
46
+ <!-- header end -->
47
+
48
+ # Finance LLM 13B - GGUF
49
+ - Model creator: [AdaptLLM](https://huggingface.co/AdaptLLM)
50
+ - Original model: [Finance LLM 13B](https://huggingface.co/AdaptLLM/finance-LLM-13B)
51
+
52
+ <!-- description start -->
53
+ ## Description
54
+
55
+ This repo contains GGUF format model files for [AdaptLLM's Finance LLM 13B](https://huggingface.co/AdaptLLM/finance-LLM-13B).
56
+
57
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
58
+
59
+ <!-- description end -->
60
+ <!-- README_GGUF.md-about-gguf start -->
61
+ ### About GGUF
62
+
63
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
64
+
65
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
66
+
67
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
68
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
69
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
70
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
71
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
72
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
73
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
74
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
75
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
76
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
77
+
78
+ <!-- README_GGUF.md-about-gguf end -->
79
+ <!-- repositories-available start -->
80
+ ## Repositories available
81
+
82
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/finance-LLM-13B-AWQ)
83
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/finance-LLM-13B-GPTQ)
84
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF)
85
+ * [AdaptLLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/AdaptLLM/finance-LLM-13B)
86
+ <!-- repositories-available end -->
87
+
88
+ <!-- prompt-template start -->
89
+ ## Prompt template: AdaptLLM
90
+
91
+ ```
92
+ ### User Input:
93
+ {prompt}
94
+
95
+ ### Assistant Output:
96
+
97
+ ```
98
+
99
+ <!-- prompt-template end -->
100
+
101
+
102
+ <!-- compatibility_gguf start -->
103
+ ## Compatibility
104
+
105
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
106
+
107
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
108
+
109
+ ## Explanation of quantisation methods
110
+
111
+ <details>
112
+ <summary>Click to see details</summary>
113
+
114
+ The new methods available are:
115
+
116
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
117
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
118
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
119
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
120
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
121
+
122
+ Refer to the Provided Files table below to see what files use which methods, and how.
123
+ </details>
124
+ <!-- compatibility_gguf end -->
125
+
126
+ <!-- README_GGUF.md-provided-files start -->
127
+ ## Provided files
128
+
129
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
130
+ | ---- | ---- | ---- | ---- | ---- | ----- |
131
+ | [finance-llm-13b.Q2_K.gguf](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF/blob/main/finance-llm-13b.Q2_K.gguf) | Q2_K | 2 | 4.85 GB| 7.35 GB | significant quality loss - not recommended for most purposes |
132
+ | [finance-llm-13b.Q3_K_S.gguf](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF/blob/main/finance-llm-13b.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
133
+ | [finance-llm-13b.Q3_K_M.gguf](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF/blob/main/finance-llm-13b.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
134
+ | [finance-llm-13b.Q3_K_L.gguf](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF/blob/main/finance-llm-13b.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
135
+ | [finance-llm-13b.Q4_0.gguf](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF/blob/main/finance-llm-13b.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
136
+ | [finance-llm-13b.Q4_K_S.gguf](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF/blob/main/finance-llm-13b.Q4_K_S.gguf) | Q4_K_S | 4 | 7.42 GB| 9.92 GB | small, greater quality loss |
137
+ | [finance-llm-13b.Q4_K_M.gguf](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF/blob/main/finance-llm-13b.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
138
+ | [finance-llm-13b.Q5_0.gguf](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF/blob/main/finance-llm-13b.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
139
+ | [finance-llm-13b.Q5_K_S.gguf](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF/blob/main/finance-llm-13b.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
140
+ | [finance-llm-13b.Q5_K_M.gguf](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF/blob/main/finance-llm-13b.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
141
+ | [finance-llm-13b.Q6_K.gguf](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF/blob/main/finance-llm-13b.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
142
+ | [finance-llm-13b.Q8_0.gguf](https://huggingface.co/TheBloke/finance-LLM-13B-GGUF/blob/main/finance-llm-13b.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
143
+
144
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
145
+
146
+
147
+
148
+ <!-- README_GGUF.md-provided-files end -->
149
+
150
+ <!-- README_GGUF.md-how-to-download start -->
151
+ ## How to download GGUF files
152
+
153
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
154
+
155
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
156
+
157
+ * LM Studio
158
+ * LoLLMS Web UI
159
+ * Faraday.dev
160
+
161
+ ### In `text-generation-webui`
162
+
163
+ Under Download Model, you can enter the model repo: TheBloke/finance-LLM-13B-GGUF and below it, a specific filename to download, such as: finance-llm-13b.Q4_K_M.gguf.
164
+
165
+ Then click Download.
166
+
167
+ ### On the command line, including multiple files at once
168
+
169
+ I recommend using the `huggingface-hub` Python library:
170
+
171
+ ```shell
172
+ pip3 install huggingface-hub
173
+ ```
174
+
175
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
176
+
177
+ ```shell
178
+ huggingface-cli download TheBloke/finance-LLM-13B-GGUF finance-llm-13b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
179
+ ```
180
+
181
+ <details>
182
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
183
+
184
+ You can also download multiple files at once with a pattern:
185
+
186
+ ```shell
187
+ huggingface-cli download TheBloke/finance-LLM-13B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
188
+ ```
189
+
190
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
191
+
192
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
193
+
194
+ ```shell
195
+ pip3 install hf_transfer
196
+ ```
197
+
198
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
199
+
200
+ ```shell
201
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/finance-LLM-13B-GGUF finance-llm-13b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
202
+ ```
203
+
204
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
205
+ </details>
206
+ <!-- README_GGUF.md-how-to-download end -->
207
+
208
+ <!-- README_GGUF.md-how-to-run start -->
209
+ ## Example `llama.cpp` command
210
+
211
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
212
+
213
+ ```shell
214
+ ./main -ngl 35 -m finance-llm-13b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### User Input:\n{prompt}\n\n### Assistant Output:"
215
+ ```
216
+
217
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
218
+
219
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
220
+
221
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
222
+
223
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
224
+
225
+ ## How to run in `text-generation-webui`
226
+
227
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
228
+
229
+ ## How to run from Python code
230
+
231
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
232
+
233
+ ### How to load this model in Python code, using llama-cpp-python
234
+
235
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
236
+
237
+ #### First install the package
238
+
239
+ Run one of the following commands, according to your system:
240
+
241
+ ```shell
242
+ # Base ctransformers with no GPU acceleration
243
+ pip install llama-cpp-python
244
+ # With NVidia CUDA acceleration
245
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
246
+ # Or with OpenBLAS acceleration
247
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
248
+ # Or with CLBLast acceleration
249
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
250
+ # Or with AMD ROCm GPU acceleration (Linux only)
251
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
252
+ # Or with Metal GPU acceleration for macOS systems only
253
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
254
+
255
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
256
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
257
+ pip install llama-cpp-python
258
+ ```
259
+
260
+ #### Simple llama-cpp-python example code
261
+
262
+ ```python
263
+ from llama_cpp import Llama
264
+
265
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
266
+ llm = Llama(
267
+ model_path="./finance-llm-13b.Q4_K_M.gguf", # Download the model file first
268
+ n_ctx=2048, # The max sequence length to use - note that longer sequence lengths require much more resources
269
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
270
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
271
+ )
272
+
273
+ # Simple inference example
274
+ output = llm(
275
+ "### User Input:\n{prompt}\n\n### Assistant Output:", # Prompt
276
+ max_tokens=512, # Generate up to 512 tokens
277
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
278
+ echo=True # Whether to echo the prompt
279
+ )
280
+
281
+ # Chat Completion API
282
+
283
+ llm = Llama(model_path="./finance-llm-13b.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
284
+ llm.create_chat_completion(
285
+ messages = [
286
+ {"role": "system", "content": "You are a story writing assistant."},
287
+ {
288
+ "role": "user",
289
+ "content": "Write a story about llamas."
290
+ }
291
+ ]
292
+ )
293
+ ```
294
+
295
+ ## How to use with LangChain
296
+
297
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
298
+
299
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
300
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
301
+
302
+ <!-- README_GGUF.md-how-to-run end -->
303
+
304
+ <!-- footer start -->
305
+ <!-- 200823 -->
306
+ ## Discord
307
+
308
+ For further support, and discussions on these models and AI in general, join us at:
309
+
310
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
311
+
312
+ ## Thanks, and how to contribute
313
+
314
+ Thanks to the [chirper.ai](https://chirper.ai) team!
315
+
316
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
317
+
318
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
319
+
320
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
321
+
322
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
323
+
324
+ * Patreon: https://patreon.com/TheBlokeAI
325
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
326
+
327
+ **Special thanks to**: Aemon Algiz.
328
+
329
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
330
+
331
+
332
+ Thank you to all my generous patrons and donaters!
333
+
334
+ And thank you again to a16z for their generous grant.
335
+
336
+ <!-- footer end -->
337
+
338
+ <!-- original-model-card start -->
339
+ # Original model card: AdaptLLM's Finance LLM 13B
340
+
341
+
342
+ # Adapt (Large) Language Models to Domains
343
+ This repo contains the domain-specific base model developed from **LLaMA-1-13B**, using the method in our paper [Adapting Large Language Models via Reading Comprehension](https://huggingface.co/papers/2309.09530).
344
+
345
+ We explore **continued pre-training on domain-specific corpora** for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to **transform large-scale pre-training corpora into reading comprehension texts**, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. **Our 7B model competes with much larger domain-specific models like BloombergGPT-50B**.
346
+
347
+ ### 🤗 We are currently working hard on developing models across different domains, scales and architectures! Please stay tuned! 🤗
348
+
349
+ **************************** **Updates** ****************************
350
+ * 12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/finance-LLM-13B) developed from LLaMA-1-13B.
351
+ * 12/8: Released our [chat models](https://huggingface.co/AdaptLLM/finance-chat) developed from LLaMA-2-Chat-7B.
352
+ * 9/18: Released our [paper](https://huggingface.co/papers/2309.09530), [code](https://github.com/microsoft/LMOps), [data](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [base models](https://huggingface.co/AdaptLLM/finance-LLM) developed from LLaMA-1-7B.
353
+
354
+
355
+ ## Domain-Specific LLaMA-1
356
+ ### LLaMA-1-7B
357
+ In our paper, we develop three domain-specific models from LLaMA-1-7B, which are also available in Huggingface: [Biomedicine-LLM](https://huggingface.co/AdaptLLM/medicine-LLM), [Finance-LLM](https://huggingface.co/AdaptLLM/finance-LLM) and [Law-LLM](https://huggingface.co/AdaptLLM/law-LLM), the performances of our AdaptLLM compared to other domain-specific LLMs are:
358
+
359
+ <p align='center'>
360
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/6efPwitFgy-pLTzvccdcP.png" width="700">
361
+ </p>
362
+
363
+ ### LLaMA-1-13B
364
+ Moreover, we scale up our base model to LLaMA-1-13B to see if **our method is similarly effective for larger-scale models**, and the results are consistently positive too: [Biomedicine-LLM-13B](https://huggingface.co/AdaptLLM/medicine-LLM-13B), [Finance-LLM-13B](https://huggingface.co/AdaptLLM/finance-LLM-13B) and [Law-LLM-13B](https://huggingface.co/AdaptLLM/law-LLM-13B).
365
+
366
+ ## Domain-Specific LLaMA-2-Chat
367
+ Our method is also effective for aligned models! LLaMA-2-Chat requires a [specific data format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2), and our **reading comprehension can perfectly fit the data format** by transforming the reading comprehension into a multi-turn conversation. We have also open-sourced chat models in different domains: [Biomedicine-Chat](https://huggingface.co/AdaptLLM/medicine-chat), [Finance-Chat](https://huggingface.co/AdaptLLM/finance-chat) and [Law-Chat](https://huggingface.co/AdaptLLM/law-chat)
368
+
369
+ For example, to chat with the finance model:
370
+ ```python
371
+ from transformers import AutoModelForCausalLM, AutoTokenizer
372
+
373
+ model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-LLM-13B")
374
+ tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-LLM-13B", use_fast=False)
375
+
376
+ # Put your input here:
377
+ user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
378
+ Common Stock, Par Value $.01 Per Share MMM New York Stock Exchange
379
+ MMM Chicago Stock Exchange, Inc.
380
+ 1.500% Notes due 2026 MMM26 New York Stock Exchange
381
+ 1.750% Notes due 2030 MMM30 New York Stock Exchange
382
+ 1.500% Notes due 2031 MMM31 New York Stock Exchange
383
+
384
+ Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''
385
+
386
+ # Simply use your input as the prompt for base models
387
+ prompt = user_input
388
+
389
+ inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
390
+ outputs = model.generate(input_ids=inputs, max_length=2048)[0]
391
+
392
+ answer_start = int(inputs.shape[-1])
393
+ pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
394
+
395
+ print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
396
+ ```
397
+
398
+ ## Domain-Specific Tasks
399
+ To easily reproduce our results, we have uploaded the filled-in zero/few-shot input instructions and output completions of each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks).
400
+
401
+ **Note:** those filled-in instructions are specifically tailored for models before alignment and do NOT fit for the specific data format required for chat models.
402
+
403
+ ## Citation
404
+ If you find our work helpful, please cite us:
405
+ ```bibtex
406
+ @article{adaptllm,
407
+ title = {Adapting Large Language Models via Reading Comprehension},
408
+ author = {Daixuan Cheng and Shaohan Huang and Furu Wei},
409
+ journal = {CoRR},
410
+ volume = {abs/2309.09530},
411
+ year = {2023}
412
+ }
413
+ ```
414
+
415
+ <!-- original-model-card end -->