TheBloke commited on
Commit
a93fc29
1 Parent(s): 7013791

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +377 -0
README.md ADDED
@@ -0,0 +1,377 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: chargoddard/loyal-piano-m7
3
+ datasets:
4
+ - pankajmathur/orca_mini_v1_dataset
5
+ - openai/summarize_from_feedback
6
+ - PygmalionAI/PIPPA
7
+ - chargoddard/rpguild
8
+ - lemonilia/LimaRP
9
+ inference: false
10
+ language:
11
+ - en
12
+ license: cc-by-nc-4.0
13
+ model_creator: Charles Goddard
14
+ model_name: Loyal Piano M7
15
+ model_type: mistral
16
+ prompt_template: '{prompt}
17
+
18
+ '
19
+ quantized_by: TheBloke
20
+ tags:
21
+ - mistral
22
+ ---
23
+ <!-- markdownlint-disable MD041 -->
24
+
25
+ <!-- header start -->
26
+ <!-- 200823 -->
27
+ <div style="width: auto; margin-left: auto; margin-right: auto">
28
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
29
+ </div>
30
+ <div style="display: flex; justify-content: space-between; width: 100%;">
31
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
33
+ </div>
34
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
36
+ </div>
37
+ </div>
38
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
39
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
40
+ <!-- header end -->
41
+
42
+ # Loyal Piano M7 - AWQ
43
+ - Model creator: [Charles Goddard](https://huggingface.co/chargoddard)
44
+ - Original model: [Loyal Piano M7](https://huggingface.co/chargoddard/loyal-piano-m7)
45
+
46
+ <!-- description start -->
47
+ ## Description
48
+
49
+ This repo contains AWQ model files for [Charles Goddard's Loyal Piano M7](https://huggingface.co/chargoddard/loyal-piano-m7).
50
+
51
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
52
+
53
+
54
+ ### About AWQ
55
+
56
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
57
+
58
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
59
+
60
+ It is supported by:
61
+
62
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
63
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
64
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
65
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
66
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
67
+
68
+ <!-- description end -->
69
+ <!-- repositories-available start -->
70
+ ## Repositories available
71
+
72
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/loyal-piano-m7-AWQ)
73
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/loyal-piano-m7-GPTQ)
74
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/loyal-piano-m7-GGUF)
75
+ * [Charles Goddard's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/chargoddard/loyal-piano-m7)
76
+ <!-- repositories-available end -->
77
+
78
+ <!-- prompt-template start -->
79
+ ## Prompt template: Unknown
80
+
81
+ ```
82
+ {prompt}
83
+
84
+ ```
85
+
86
+ <!-- prompt-template end -->
87
+
88
+
89
+ <!-- README_AWQ.md-provided-files start -->
90
+ ## Provided files, and AWQ parameters
91
+
92
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
93
+
94
+ Models are released as sharded safetensors files.
95
+
96
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
97
+ | ------ | ---- | -- | ----------- | ------- | ---- |
98
+ | [main](https://huggingface.co/TheBloke/loyal-piano-m7-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
99
+
100
+ <!-- README_AWQ.md-provided-files end -->
101
+
102
+ <!-- README_AWQ.md-text-generation-webui start -->
103
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
104
+
105
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
106
+
107
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
108
+
109
+ 1. Click the **Model tab**.
110
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/loyal-piano-m7-AWQ`.
111
+ 3. Click **Download**.
112
+ 4. The model will start downloading. Once it's finished it will say "Done".
113
+ 5. In the top left, click the refresh icon next to **Model**.
114
+ 6. In the **Model** dropdown, choose the model you just downloaded: `loyal-piano-m7-AWQ`
115
+ 7. Select **Loader: AutoAWQ**.
116
+ 8. Click Load, and the model will load and is now ready for use.
117
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
118
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
119
+ <!-- README_AWQ.md-text-generation-webui end -->
120
+
121
+ <!-- README_AWQ.md-use-from-vllm start -->
122
+ ## Multi-user inference server: vLLM
123
+
124
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
125
+
126
+ - Please ensure you are using vLLM version 0.2 or later.
127
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
128
+
129
+ For example:
130
+
131
+ ```shell
132
+ python3 -m vllm.entrypoints.api_server --model TheBloke/loyal-piano-m7-AWQ --quantization awq --dtype auto
133
+ ```
134
+
135
+ - When using vLLM from Python code, again set `quantization=awq`.
136
+
137
+ For example:
138
+
139
+ ```python
140
+ from vllm import LLM, SamplingParams
141
+
142
+ prompts = [
143
+ "Tell me about AI",
144
+ "Write a story about llamas",
145
+ "What is 291 - 150?",
146
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
147
+ ]
148
+ prompt_template=f'''{prompt}
149
+ '''
150
+
151
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
152
+
153
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
154
+
155
+ llm = LLM(model="TheBloke/loyal-piano-m7-AWQ", quantization="awq", dtype="auto")
156
+
157
+ outputs = llm.generate(prompts, sampling_params)
158
+
159
+ # Print the outputs.
160
+ for output in outputs:
161
+ prompt = output.prompt
162
+ generated_text = output.outputs[0].text
163
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
164
+ ```
165
+ <!-- README_AWQ.md-use-from-vllm start -->
166
+
167
+ <!-- README_AWQ.md-use-from-tgi start -->
168
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
169
+
170
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
171
+
172
+ Example Docker parameters:
173
+
174
+ ```shell
175
+ --model-id TheBloke/loyal-piano-m7-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
176
+ ```
177
+
178
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
179
+
180
+ ```shell
181
+ pip3 install huggingface-hub
182
+ ```
183
+
184
+ ```python
185
+ from huggingface_hub import InferenceClient
186
+
187
+ endpoint_url = "https://your-endpoint-url-here"
188
+
189
+ prompt = "Tell me about AI"
190
+ prompt_template=f'''{prompt}
191
+ '''
192
+
193
+ client = InferenceClient(endpoint_url)
194
+ response = client.text_generation(prompt,
195
+ max_new_tokens=128,
196
+ do_sample=True,
197
+ temperature=0.7,
198
+ top_p=0.95,
199
+ top_k=40,
200
+ repetition_penalty=1.1)
201
+
202
+ print(f"Model output: ", response)
203
+ ```
204
+ <!-- README_AWQ.md-use-from-tgi end -->
205
+
206
+ <!-- README_AWQ.md-use-from-python start -->
207
+ ## Inference from Python code using Transformers
208
+
209
+ ### Install the necessary packages
210
+
211
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
212
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
213
+
214
+ ```shell
215
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
216
+ ```
217
+
218
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
219
+
220
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
221
+
222
+ ```shell
223
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
224
+ ```
225
+
226
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
227
+
228
+ ```shell
229
+ pip3 uninstall -y autoawq
230
+ git clone https://github.com/casper-hansen/AutoAWQ
231
+ cd AutoAWQ
232
+ pip3 install .
233
+ ```
234
+
235
+ ### Transformers example code (requires Transformers 4.35.0 and later)
236
+
237
+ ```python
238
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
239
+
240
+ model_name_or_path = "TheBloke/loyal-piano-m7-AWQ"
241
+
242
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
243
+ model = AutoModelForCausalLM.from_pretrained(
244
+ model_name_or_path,
245
+ low_cpu_mem_usage=True,
246
+ device_map="cuda:0"
247
+ )
248
+
249
+ # Using the text streamer to stream output one token at a time
250
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
251
+
252
+ prompt = "Tell me about AI"
253
+ prompt_template=f'''{prompt}
254
+ '''
255
+
256
+ # Convert prompt to tokens
257
+ tokens = tokenizer(
258
+ prompt_template,
259
+ return_tensors='pt'
260
+ ).input_ids.cuda()
261
+
262
+ generation_params = {
263
+ "do_sample": True,
264
+ "temperature": 0.7,
265
+ "top_p": 0.95,
266
+ "top_k": 40,
267
+ "max_new_tokens": 512,
268
+ "repetition_penalty": 1.1
269
+ }
270
+
271
+ # Generate streamed output, visible one token at a time
272
+ generation_output = model.generate(
273
+ tokens,
274
+ streamer=streamer,
275
+ **generation_params
276
+ )
277
+
278
+ # Generation without a streamer, which will include the prompt in the output
279
+ generation_output = model.generate(
280
+ tokens,
281
+ **generation_params
282
+ )
283
+
284
+ # Get the tokens from the output, decode them, print them
285
+ token_output = generation_output[0]
286
+ text_output = tokenizer.decode(token_output)
287
+ print("model.generate output: ", text_output)
288
+
289
+ # Inference is also possible via Transformers' pipeline
290
+ from transformers import pipeline
291
+
292
+ pipe = pipeline(
293
+ "text-generation",
294
+ model=model,
295
+ tokenizer=tokenizer,
296
+ **generation_params
297
+ )
298
+
299
+ pipe_output = pipe(prompt_template)[0]['generated_text']
300
+ print("pipeline output: ", pipe_output)
301
+
302
+ ```
303
+ <!-- README_AWQ.md-use-from-python end -->
304
+
305
+ <!-- README_AWQ.md-compatibility start -->
306
+ ## Compatibility
307
+
308
+ The files provided are tested to work with:
309
+
310
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
311
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
312
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
313
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
314
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
315
+
316
+ <!-- README_AWQ.md-compatibility end -->
317
+
318
+ <!-- footer start -->
319
+ <!-- 200823 -->
320
+ ## Discord
321
+
322
+ For further support, and discussions on these models and AI in general, join us at:
323
+
324
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
325
+
326
+ ## Thanks, and how to contribute
327
+
328
+ Thanks to the [chirper.ai](https://chirper.ai) team!
329
+
330
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
331
+
332
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
333
+
334
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
335
+
336
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
337
+
338
+ * Patreon: https://patreon.com/TheBlokeAI
339
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
340
+
341
+ **Special thanks to**: Aemon Algiz.
342
+
343
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
344
+
345
+
346
+ Thank you to all my generous patrons and donaters!
347
+
348
+ And thank you again to a16z for their generous grant.
349
+
350
+ <!-- footer end -->
351
+
352
+ # Original model card: Charles Goddard's Loyal Piano M7
353
+
354
+
355
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
356
+
357
+ Experimenting with dataset ratios. Intended to be a roleplay-focused model with some smarts and good long-context recall.
358
+
359
+ Not sure if I've succeeded on the roleplay front, but something sure went right! Currently the #4 7B model on the leaderboard as of 11/30/2023. Going to riff on this and see where it goes.
360
+
361
+ | model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | DROP |
362
+ | --- | --- | --- | --- | --- | --- | --- | --- | --- |
363
+ | fblgit/juanako-7b-UNA | 59.91 | 68.17 | 85.34 | 62.47 | 65.13 | 78.85 | 20.7 | 38.74 |
364
+ | Intel/neural-chat-7b-v3-1 | 59.06 | 66.21 | 83.64 | 62.37 | 59.65 | 78.14 | 19.56 | 43.84 |
365
+ | Weyaxi/OpenHermes-2.5-neural-chat-7b-v3-1-7B | 58.6 | 66.55 | 84.47 | 63.34 | 61.22 | 78.37 | 23.58 | 32.66 |
366
+ | **chargoddard/loyal-piano-m7** | 58.42 | 66.72 | 85.03 | 64.43 | 60.03 | 79.08 | 25.7 | 27.92 |
367
+ | Gryphe/MythoMist7b | 58.26 | 65.87 | 83.55 | 62.32 | 59.98 | 78.06 | 20.24 | 37.82 |
368
+
369
+
370
+ Dataset composition:
371
+ | dataset | rows used | percent of total |
372
+ | --- | --- | --- |
373
+ | PIPPA | 14.6k | 43% |
374
+ | summarize_from_feedback | 9k | 26% |
375
+ | orca_mini_v1_dataset | 5.6k | 17% |
376
+ | rpguild | 2.86k | 8% |
377
+ | LimaRP | 2k | 6% |